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This note will contain some core concepts required to have a basic understanding of the Stein’s method.
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1 Kernelized Stein discrepancy

1.1 Background [Liu, 2016]

Given data: {xi}ni=1, and model: p(x). We want some discrepancy measures that can tell the consistency between data
and models. They have wide applications in:

• Model evalution: {xi}ni=1 and p(x) are both given, (discrepancy measures tell us how well a model fits data).

• Frequentist parameter learning: {xi}ni=1 is given and we optimize p(x), (find the model that minimizes the dis-
crepancy with data).

• Sampling for Bayesian inference: p(x) is given and we want to optimize {xi}ni=1, (find a set of points (”data”) to
approximate the posterior distribution).

The discrepancy measure should to be computationally tractable, the famous KL divergence DKL [p(x) ‖ q(x)] =

Ep(x)
[
log p(x)

q(x)

]
is not ideal for this case because:
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• log q(x) is required, however, a lot models are only known up to a normalization constant, e.g. energy based models
(EBMs): q(x) = exp (−E(x)) /Z, where Z =

∫
X exp (−E(x)) dx is the normalization constant.

• It is not straightforward to talk about the KL divergence DKL ({xi}ni=1 ‖ p(x)) between a set of data points (drawn
from a distribution q) and the model, since in this way we have to do density estimation (or entropy estimation)
for {xi}ni=1.

Kernelized Stein discrepancy (KSD) [Liu et al., 2016] provides a convenient way to directly assess the compatibility of
data-model pairs, even for models with intractable normalization constant.
For simplicity, in the following f(·) is always referred to a scalar-valued function, and the data points x’s are also scalars.
The multi-variate case will be discussed in Section 2.1.

1.2 Stein’s identity

For distributions with smooth density p(x) and function f(x) (supported on R) that satisfies lim‖x‖→∞ p(x)f(x) = 0,
we have:

Ep(x) [∇x log p(x)f(x) +∇xf(x)] = 0, ∀f. (1)

Proof. ∫
p(x) [∇x log p(x)f(x) +∇xf(x)] =

∫
[∇xp(x)f(x) + p(x)∇xf(x)] dx

=

∫
∇x [f(x)p(x)] dx

= lim
x→∞

p(x)f(x)− lim
x→−∞

p(x)f(x)

= 0.

(2)

Here we define Apf(x) = ∇x log p(x)f(x)+∇xf(x), where Ap is called the Stein operator. And we say that a function
f : X → R is in the Stein class of p if f is smooth and satisfies:∫

x∈X
∇x (f(x)p(x)) dx = 0. (3)

1.3 (Kernelized) Stein discrepancy

Consider Eq [Apf(x)] = Eq [Apf(x)] − Eq [Aqf(x)] = Eq(x) [f(x) (∇x log p(x)−∇x log q(x))] (the equation holds
because of Lemma 1). In this way, Stein’s identity provides a mechanism to compare two different distributions. It is
convenient to consider the most discriminant f that maximizes the violation of Stein’s identity, this leads to the notion
of Stein discrepancy for measuring the difference between two distributions p and q:√

S(q, p) = max
f∈F

Eq(x) [Apf(x)] , (4)

where F is a proper set of functions that we optimize over.
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When f can be represented as a linear combination f(·) =
∑
i wifi(·) of a set of known basis functions fi(·), with

unknown coefficients wi. In this case we have:

Eq [Apf ] = Ex∼q

[
Ap
∑
i

wifi(x)

]
=
∑
i

wiβi,

(5)

where βi = Eq(x) [Apfi(x)], which is a fixed scalar when x is a scalar. Then the optimization problem delivered in
equation 4 becomes to:

max
w

∑
i

wiβi, s.t. ‖w‖ ≤ 1, (6)

and the optimal solution with closed form can be easily got as w∗i = βi/‖βi‖.
Kernelized Stein discrepancy (KSD) takes F to be the unit ball of a reproducing kernel Hilbert space (RKHS) with kernel
k(·, ·). (The RKHS H related to k(·, ·) contains functions of form f(·) =

∑
i wik(xi, ·)) And KSD is defined as:√

S(q, p) = max
f∈H

Eq(x) [Apf(x)] , s.t. ‖f‖H ≤ 1. (7)

To use a RKHS H as F , we should make sure that ∀f ∈ H is in the Stein class of p, and this is carefully discussed in
Section 3 of [Liu et al., 2016], in the following we simply assume k(x, ·) and k(·,x) are in the Stein class of p for any
fixed x.
Our goal is to derive a computational tractable closed form solution to equation 7. First, by the reproducing property of
RKHS [Sejdinovic and Gretton, 2012], we have:

f(x) = 〈f(·), k(x, ·)〉H, (8)

∇xf(x) = 〈f(·),∇xk(x, ·)〉H, (9)

with the reproducing property and the definition of Stein’s operator, we have:

Eq(x) [Apf(x)] = Eq(x) [∇x log p(x)f(x) +∇xf(x)] (10)

= Eq(x) [∇x log p(x)〈f(·), k(x, ·)〉H + 〈f(·),∇xk(x, ·)〉H] (11)

= 〈f(·),Eq(x) [k(x, ·)∇x log p(x) +∇xk(x, ·)]〉H (12)

= 〈f(·),Eq(x) [Apk(x, ·)]〉H (13)

= 〈f(·), βq,p(·)〉H, (14)

equation 12 holds because of the linearity of expectation and inner product operation, in equation 14 we define βq,p(·) =
Eq(x) [Apk(x, ·)], and similar to equation 6, we have the optimal solution to equation 7:

f∗(·) = βq,p(·)/‖βq,p(·)‖H, (15)

and
√
S(q, p) = ‖βq,p(·)‖H, S(q, p) = ‖βq,p(·)‖2H. Thus, we have:

S(q, p) = 〈βq,p(·), βq,p(·)〉H (16)

= 〈Ex∼q [Apk(x, ·)] ,Ex′∼q [Apk(x′, ·)]〉H (17)

= 〈Ex∼q [(sp(x)− sq(x))k(x, ·)] ,Ex′∼q [(sp(x
′)− sq(x′))k(x′, ·)]〉H (18)

= Ex,x′∼q

(sp(x)− sq(x))> k(x,x′)(sp(x′)− sq(x′))︸ ︷︷ ︸
1©

 , (19)
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we use sp(x) in equation 18 to denote ∇x log p(x), and the equality holds because of Lemma 1. The form in equation 19
still contains the intractable sq(·), we will further make it computationally tractable.
First, note that we can apply Lemma 1 to 1© in equation 19 by keeping x fixed (denote k(x,x′) = kx(x

′) in this case),
then we have:

Ex,x′∼q
[
(sp(x)− sq(x))>kx(x′)(sp(x′)− sq(x′))

]
(20)

= Ex,x′∼q
[
(sp(x)− sq(x))>Apkx(x′)

]
(21)

= Ex,x′∼q
[
(sp(x)− sq(x))> (kx(x

′)∇x′ log p(x
′) +∇x′kx(x

′))
]

(22)

= Ex,x′∼q
[
(sp(x)− sq(x))>v(x,x′)

]
, (23)

where we denote v(x,x′) = Ax′

p kx(x
′) = kx(x

′)∇x′ log p(x
′) +∇x′kx(x

′) ∈ Rd, and vx′(x) is also in the Stein class,
thus Lemma 2 is applicable to equation 23, and we can have:

Ex,x′∼q
[
(sp(x)− sq(x))>vx′(x)

]
(24)

= Ex,x′∼q
[
trace

(
Ax
pvx′(x)

)]
(25)

= Ex,x′∼q

[
trace

(
Ax
pAx′

p k(x,x
′)
)]

(26)

= Ex,x′∼q
[
trace

(
∇x log p(x)vx′(x)

> +∇xvx′(x)
)]

(27)

= Ex,x′∼q
[
trace

(
∇x log p(x)

>vx′(x)
)
+ trace (∇xvx′(x))

]
, (28)

= Ex,x′∼q
[
sp(x)

>k(x,x′)sp(x
′) + sp(x)

>∇x′k(x,x
′) + trace

(
∇xk(x,x

′)sp(x
′)>
)
+ trace (∇x∇x′k(x,x

′))
]

(29)

= Ex,x′∼q
[
sp(x)

>k(x,x′)sp(x
′) + sp(x)

>∇x′k(x,x
′) + sp(x

′)>∇xk(x,x
′) + trace (∇x∇x′k(x,x

′))
]
, (30)

now the intractable sq(x) terms are removed from the formulation of KSD.

2 Stein Variational Gradient Descent

2.1 Multi-dimensional KSD

In the following, we will consider data points take values in X ⊂ Rd and φ : X → Rd. We can apply the Stein identity in
equation 1 again by taking φ(x) as the f(x), a tiny difference is now x ∈ Rd and φ(x) = [φ1(x), · · · , φd(x)]> are both
d-dimensional vectors, and Apφ(x) = φ(x)∇x log p(x)

> +∇xφ(x) ∈ Rd×d. We will also use Hd to denote the space

of vector functions f = [f1, · · · , fd] with fd ∈ H, whose inner product is given by 〈f , g〉Hd =
∑d
i=1〈fi, gi〉H. And the

Stein discrepancy which searches the φ in the RKHS Hd is given by:√
S(q, p) = max

φ∈Hd
{Ex∼q [trace (Apφ(x))] s.t. ‖φ‖Hd ≤ 1}, (31)

and the objective of equation 31 can be further written as:

Eq(x) [trace (Apφ(x))] (32)

= Eq(x)
[
trace

(
φ(x)∇x log p(x)

>)+ trace (∇xφ(x))
]

(33)

= Eq(x)

[
d∑
i=1

(
∂

∂xi
φi(x) +

∂

∂xi
log p(x)φi(x)

)]
, (34)
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and since every φi(·) comes from the RKHS with reproducing kernel k(·, ·), by the reproducing property we can have:

φi(x) = 〈φi(·), k(x, ·)〉H, (35)

∂

∂xi
φi(x) = 〈φi(·),

∂

∂xi
k(x, ·)〉H, (36)

thus equation 34 can be further derived as:

Eq(x)

[
d∑
i=1

(
∂

∂xi
φi(x) +

∂

∂xi
log p(x)φi(x)

)]
(37)

=

d∑
i=1

〈φi(·),Eq(x)
[
∂

∂xi
log p(x)k(x, ·) + ∂

∂xi
k(x, ·)

]
〉H, (38)

the optimal unnormalized φ̃(·) is given by simply setting its i-th entry to Eq(x)
[
∂
∂xi

log p(x)k(x, ·) + ∂
∂xi

k(x, ·)
]
, which

means φ̃∗(·) = Eq(x) [Apk(x, ·)] (note that Apk(x, ·) ∈ Rd) and φ∗(x) = φ̃∗(x)/‖φ̃∗(·)‖Hd .

2.2 Variational inference with smooth transforms

The general idea of Stein Variational Gradient Descent (SVGD) [Liu and Wang, 2016] is incrementally transforming a
set of data points {xi}ni=1,xi ∈ Rd sampled from a known initial distribution q(x) to approximate a target distribution
p(x) = p̃(x)/Z which may be unnormalized. The transformation is in the form of: T (x) = x+ εφ(x), where φ(x) ∈ Rd
is a smooth function that characterizes the direction and the scalar ε represents the magnitude.
Denote q[T ] as the density of the transformed points, when |ε| is sufficiently small, T is guranteed to be invertible, and
denote z = T (x), we have:

q[T ](z) = q(T−1(z))
∣∣det (J−1T (z)

)∣∣ . (39)

SVGD proposes to use q[T ](z) to do variational inference by updating the particles to get close to p(x) in terms of KL
divergence. And there is a surprising connection between Stein operator and the derivative of KL divergence w.r.t. the
perturbation magnitude ε:

∇εDKL

(
q[T ] ‖ p

)∣∣
ε=0

(40)

= ∇εDKL

(
q ‖ p[T−1]

)∣∣
ε=0

(41)

= Ex∼q
[
−∇ε log p[T−1] (x)

]∣∣
ε=0

(42)

= Ex∼q [−∇ε (log p (Tε(x)) + log |det JT (x)|)]|ε=0 (43)

= −Ex∼q
[
sp(Tε(x))

>∇εTε(x) + trace
(
JT (x)

−1∇εJT (x)
)]∣∣

ε=0
(44)

= −Ex∼q
[
sp(x)

>φ(x) + trace (I∇xφ(x))
]

(45)

= −Ex∼q [trace (Apφ(x))] . (46)

We can see it is equivalent to the objective in equation 31, and when we consider φ(·) in the unit ball of Hd , the optimal
direction that gives the steepest descent on the KL divergence has a closed form solution as φ∗q,p(·) = βq,p(·) =
Ex∼q [Apk(x, ·)] = Ex∼q [∇x log p(x)k(x, ·) +∇xk(x, ·)], this is computationally tractable.
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A The reproducing property

Refer to [Sejdinovic and Gretton, 2012].

B Lemmas

Lemma 1 (First half of Lemma 2.3 of [Liu et al., 2016]). Assume p(x) and q(x) are smooth densities supported on X
and scalar-valued function f(x) is in the Stein class of q, we have:

Ex∼q [Apf(x)] = Ex∼q [(sp(x)− sq(x))f(x)] .

Lemma 2 (Second half of Lemma 2.3 of [Liu et al., 2016]). Assume p(x) and q(x) are smooth densities supported on
X and when f(x) is a d× 1 vector-valued function in the Stein class of q, we have:

Ex∼q
[
(sp(x)− sq(x))>f(x)

]
= Ex∼q [trace (Apf(x))] .
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