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This note will contain some core concepts required to have a basic understanding of the Stein's method.
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1 Kernelized Stein discrepancy

1.1 Background [Liu, 2016]

Given data: {x;}!_,, and model: p(x). We want some discrepancy measures that can tell the consistency between data
and models. They have wide applications in:

e Model evalution: {x;}" ; and p(x) are both given, (discrepancy measures tell us how well a model fits data).

e Frequentist parameter learning: {x;} , is given and we optimize p(x), (find the model that minimizes the dis-
crepancy with data).

e Sampling for Bayesian inference: p(x) is given and we want to optimize {x;}7 ;, (find a set of points ("data”) to
approximate the posterior distribution).

The discrepancy measure should to be computationally tractable, the famous KL divergence Dxr, [p(x) || ¢(x)] =

Epx) [log %} is not ideal for this case because:



e log g(x) is required, however, a lot models are only known up to a normalization constant, e.g. energy based models
(EBMs): q(x) = exp (—E(x)) /Z, where Z = [, exp (—E(x)) dx is the normalization constant.

e It is not straightforward to talk about the KL divergence Dx1, ({x;}7; || p(x)) between a set of data points (drawn
from a distribution ¢) and the model, since in this way we have to do density estimation (or entropy estimation)

for {x;}1;.

Kernelized Stein discrepancy (KSD) [Liu et al., 2016] provides a convenient way to directly assess the compatibility of
data-model pairs, even for models with intractable normalization constant.

For simplicity, in the following f(-) is always referred to a scalar-valued function, and the data points x's are also scalars.
The multi-variate case will be discussed in Section 2.1.

1.2 Stein’s identity

For distributions with smooth density p(x) and function f(x) (supported on R) that satisfies lim x| oo P(X)f(x) = 0,
we have:

Epx) [Vxlog p(x) f(x) + Vx f(x)] = 0, V. (1)
Proof.
[ 900) (9100 + V)] = [ [T0(0) ) + p(x)Vic (0] dx
— [ ValsGopx))ax o)
= lim p(x)f(x) = lim p(x)f(x)
=0.
O

Here we define A, f(x) = Vxlogp(x) f(x) + Vx f(x), where A, is called the Stein operator. And we say that a function
f X = Ris in the Stein class of p if f is smooth and satisfies:

| T ep) ax = ©

1.3 (Kernelized) Stein discrepancy

Consider E, [4,f(x)] = Eq LA, f(x)] — By LA, f(x)] = Eyoe [f(%) (Vs log p(x) — Vi log g(x))] (the equation holds
because of Lemma 1). In this way, Stein's identity provides a mechanism to compare two different distributions. It is
convenient to consider the most discriminant f that maximizes the violation of Stein's identity, this leads to the notion
of Stein discrepancy for measuring the difference between two distributions p and ¢:

S(Qap) = Ifnea‘]}__(Eq(x) [-Apf(x)] ) (4)

where F is a proper set of functions that we optimize over.



When f can be represented as a linear combination f(-) = Y. w; f;(-) of a set of known basis functions f;(-), with
unknown coefficients w;. In this case we have:

Eq [Apf] = Exnyg

-A szfz ]

where 3; = Eq(x) [Apfi(x)], which is a fixed scalar when x is a scalar. Then the optimization problem delivered in
equation 4 becomes to:

(5)

mvaixZwiBi, st |wl <1, (6)

and the optimal solution with closed form can be easily got as w} = §;/||5il|.
Kernelized Stein discrepancy (KSD) takes F to be the unit ball of a reproducing kernel Hilbert space (RKHS) with kernel
E(-,-). (The RKHS H related to k(-,-) contains functions of form f(-) = >, w;k(x;,-)) And KSD is defined as:

5(a,p) = maxBoeo [Ap f], - st (Il <1 (7)

To use a RKHS H as F, we should make sure that Vf € H is in the Stein class of p, and this is carefully discussed in
Section 3 of [Liu et al., 2016], in the following we simply assume k(x,-) and k(-,x) are in the Stein class of p for any
fixed x.

Our goal is to derive a computational tractable closed form solution to equation 7. First, by the reproducing property of
RKHS [Sejdinovic and Gretton, 2012], we have:

&) = (FC) k&), (8)
vxf(x) = <f()a ka(xv ')>7‘la (9)

with the reproducing property and the definition of Stein's operator, we have:

Eq) [Apf (¥)] = Eq(x) [V log p(x) f (%) + Vi f(x)] (
= Eq(x) [Vxlog p(x)(f (), k(x, )2 + (), Vick(x, ) 2] (
= (f(): Eqeo) [R(x,-) Vi log p(x) + Vixk(x, )] u (12)
= (F (), Eq) [Apk (%, )l (
= (f(): Byp(-))m (

equation 12 holds because of the linearity of expectation and inner product operation, in equation 14 we define S, ,(+)
Eq(x) [Apk(x,-)], and similar to equation 6, we have the optimal solution to equation 7:

()= qu(')/Hﬁq,p(')HHa (15)
and \/S(¢,p) = [|Bep( )l S(a.p) = [1Bg.p(-)[I7,- Thus, we have:
5(a:p) = (Bap(); Bap())n (16)
= (Bxg [Apk(x, )] Exrg [Aph (X', ) )2 (17)
= (Bxg [(5p(%) = 54 (X))k(x, )], Bxcrng [(sp(x") = 5¢(xX)E(X, ) )2 (18)
= Exixng [ (5p(%) = 5q(x)) T k(x,X) (5p(x) = 5(x)) | | (19)
ey



we use s,(x) in equation 18 to denote Vy log p(x), and the equality holds because of Lemma 1. The form in equation 19
still contains the intractable s4(-), we will further make it computationally tractable.

First, note that we can apply Lemma 1 to (D in equation 19 by keeping x fixed (denote k(x,x’) = kx(x’) in this case),
then we have:

Exx~g [(5p(%) = 5¢(%)) Thx(x) (3 (x') = 54(x'))]

(
= Exx/ng [(5p(%) = 5q(x)) T Apkx (x')] (21)
= Exxing [(5p(%) = 54(x)) " (kx(X') Ve log p(x') + Vs ki (x'))] (22)
= Exx/g [(5p(%) = 54(x)) T0(,x)] (23)

where we denote v(x,x’) = A;‘/kx(x’) = kx(x') Vi logp(x') + Ve kx(x') € RY, and vy (x) is also in the Stein class,
thus Lemma 2 is applicable to equation 23, and we can have:

i [(5p(%) = 5¢(x)) Tvxr (%)] (
=Ex x'ng [trace (A Vyr (X) )] (
= Ex x'ng [trace (A"Ax (x,x’ )} (
= Ex x'~q [trace (Vi log p(x)vyx (x )T+ Vaevge (x )] (27)
[trace (Vyx log p(x T (x ) + trace (Vxvx (x))] (
[ (
[ (

)
)
sp(x Tk x')sp(x'
= Exx/ng [Sp(X (x

)
)

NN
[o) NG,
— N

= Exx'~g

N
(o)
~

= Ex x'~g

+ Sp( )TV k(x,x') + trace (Vxk(x, x')s,(x) ") + trace (Vx Vi k(x,x'))]
+ s

)
Tk(x,x)s,(x') (x) " Vi k(x,x') + 5,(x) T Vik(x, %) + trace (Vi Vi k(x, x'))],

now the intractable s,(x) terms are removed from the formulation of KSD.

2 Stein Variational Gradient Descent

2.1 Multi-dimensional KSD

In the following, we will consider data points take values in X C R? and ¢ : X — R?. We can apply the Stein identity in
equation 1 again by taking ¢(x) as the f(x), a tiny difference is now x € R? and ¢(x) = [¢1(x),- - - , da(x)] " are both
d-dimensional vectors, and A,¢(x) = ¢(x)Vxlogp(x) " + Vxpp(x) € R4 We will also use H¢ to denote the space
of vector functions f = [f1,- -, fa] with fg € H, whose inner product is given by (f,g)ya = Zf:1<fi,gi>y. And the
Stein discrepancy which searches the ¢ in the RKHS #H? is given by:

VS(g,p) = max {Ex, [trace (A4,0(x))] st [|@llye < 1}, (31)

pEH

and the objective of equation 31 can be further written as:

Eq(x) [trace (A (x))] (32)
= Eqx) [trace (¢p(x)Vx logp(x) ") + trace (Vx(x))] (33)
d
=Eqx) Z (68x¢i(x) + 8?(- (X)@(X))] ; (34)
i=1 ‘ ‘




and since every ¢;(-) comes from the RKHS with reproducing kernel k(-,-), by the reproducing property we can have:

d)z(x) = <¢z()7 k‘(X, )>Ha (35)
0 0
aixiqsi(x) = <¢1()7 aixik()g ')>H7 (36)
thus equation 34 can be further derived as:
d

) Z (;Xicbi(X) + aii logp(X)@(X)ﬂ (37)

d
= D (6100 By [ ookl ) + k() (9

the optimal unnormalized ¢(-) is given by simply setting its i-th entry to Eq(x) {aixi log p(x)k(x, ) + 22 k(x, )} which

Ox;
means ¢*(-) = Eyx) [Apk(x, )] (note that A,k(x,-) € RY) and ¢*(x) = ¢*(x)/[d*(-) ||

2.2 Variational inference with smooth transforms

The general idea of Stein Variational Gradient Descent (SVGD) [Liu and Wang, 2016] is incrementally transforming a
set of data points {x;}™ ;,x; € R? sampled from a known initial distribution g(x) to approximate a target distribution
p(x) = p(x)/Z which may be unnormalized. The transformation is in the form of: T'(x) = x + e¢(x), where ¢(x) € R?
is a smooth function that characterizes the direction and the scalar € represents the magnitude.
Denote g7 as the density of the transformed points, when |e| is sufficiently small, T' is guranteed to be invertible, and
denote z = T'(x), we have:

4r)(2) = (T~ (2)) [det (I (2)) . (39)

SVGD proposes to use gi)(z) to do variational inference by updating the particles to get close to p(x) in terms of KL
divergence. And there is a surprising connection between Stein operator and the derivative of KL divergence w.r.t. the
perturbation magnitude e:

VeDxe (qr || p) ‘6:0 )
= VDxr (q || P[T—1])|e:0 .
= Exg [~ Velog pr-1) (x)] |5:o 42)

(
(
(
= Exng [=Ve (logp (Te(x)) + log [det Jr(x)])]] .o (43
(
(
(

~—

~

= —Exq [sp(Te(x))TVETe(x) + trace (JT(X)_1V6JT(X))} ’6:
= —Exq [sp(x)—rqb(x) + trace (IVxp(x))]
= —Exq [trace (Ap¢(x))] .

0
45)
46)

We can see it is equivalent to the objective in equation 31, and when we consider ¢(-) in the unit ball of #? , the optimal
direction that gives the steepest descent on the KL divergence has a closed form solution as ¢} ,(-) = By () =
Ex~q [Apk(%, )] = Ex~q [Vx log p(x)k(x, -) + Vxk(x, -)], this is computationally tractable.



References

Q. Liu. A short introduction to kernelized stein discrepancy, 2016.

Q. Liu and D. Wang. Stein variational gradient descent: A general purpose bayesian inference algorithm. Advances in
neural information processing systems, 29, 2016.

Q. Liu, J. Lee, and M. Jordan. A kernelized stein discrepancy for goodness-of-fit tests. In International conference on
machine learning, pages 276-284. PMLR, 2016.

D. Sejdinovic and A. Gretton. What is an rkhs? Lecture Notes, 2012.

A The reproducing property

Refer to [Sejdinovic and Gretton, 2012].

B Lemmas

Lemma 1 (First half of Lemma 2.3 of [Liu et al., 2016]). Assume p(x) and q(x) are smooth densities supported on X
and scalar-valued function f(x) is in the Stein class of q, we have:

Bxng [Apf ()] = Exng [(5p(x) = 54(x)) f ()]

Lemma 2 (Second half of Lemma 2.3 of [Liu et al., 2016]). Assume p(x) and q(x) are smooth densities supported on
X and when f(x) is a d x 1 vector-valued function in the Stein class of q, we have:

Ex~q [(sp(x) - sq(x))Tf(x)] = Ex~q [trace (-Ap.f(x))] .
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