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Abstract

For some time now I did not know exactly why we can compute the likelihood of a sample with a diffusion model.
In this note, I discuss how the ODE nature of a diffusion model makes exact likelihood evaluation possible.

1 The Probability Flow ODE

In diffusion models, we first have a forward diffusion process that perturbs the data distribution p0 = pdata to the prior
distribution p1 = N (0, I)

dx = ft(x)dt+ gtdw, (1)

we are always interested in the marginal distribution pt(x),∀t ∈ [0, 1], and its instantaneous change can be described by
the Fokker-Planck Equation:

∂

∂t
pt(x) = −∇x · [ft(x)pt(x)] + 1

2g
2
t∇x · ∇xpt(x), (2)

note that for the RHS, ∀σ2
t < g2

t , we always have the following equivalence (refer to the blog post by Jianlin Su)
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(3)

this tell us that all the following diffusion processes have the same marginal distribution as equation 1

dx = f̃t(x)dt+ g̃tdw

=
(
ft(x)− 1

2
(
g2
t − σ2

t

)
∇x log pt(x)

)
dt+ σtdw,

(4)

and one special case can be the one given by setting σt = 0, in this case all the stochacity is removed, and the marginal
distributions deduced from the ordianary differential equation

dx = ft(x)dt− 1
2g

2
t∇x log pt(x)dt, (5)

is still equivalent to the ones deduced by equation 1. This is the probability flow ODE (PF ODE), and has the same form
whenever in the forward or the reverse direction.
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2 The Instantaneous Change of Variables Formula

In practice, we always use a neural network sθt (x) to approximate the exact score ∇x log pt(x), and in this case, the
continuous dynamics of xt is specified by the following Neural ODE [Chen et al., 2018]

dx
dt = ft(x)− 1

2g
2
t s
θ
t (x) = τθt (x), (6)

and we can easily get the instantaneous change of pt(x) from equation 2 by plugging ft(x) = τθ(x, t) and gt = 0

∂

∂t
pt(x) = −∇x ·

[
τθt (x)pt(x)

]
+ 0, (7)

equation 7 is sometimes called as the Continuity Equation, that the instantaneous change of pt(x) is determined by the
trace of the Jacobian of τθt (x)pt(x). Further by the log-derivative trick, we finally reach to

∂

∂t
log pt(x) = 1

pt(x)
∂

∂t
pt(x) = −∇x ·

[
τθt (x)

]
= −trace

(
∂

∂xτ
θ
t

)
. (8)

Remark 1. In the above, I omitted the dependence to t of x, actually x itself is a random variable relied on the time
index t, which is x(t).

With the foundamental theorem of calculus, we have

log p1(x(1))− log p0(x(0)) =
∫ 1

0
−∇x ·

[
τθt (x)

]
dt, (9)

thus the log density of a generated sample x(0) from x(1) from a diffusion model can be computed as

log p0(x(0)) = log p1(x(1)) +
∫ 1

0
∇x ·

[
τθt (x)

]
dt. (10)

3 Computing the Likelihood

In the following, I am going to do some notation change. I will use z to denote x(1) and x to denote x(0), and z(t) to
denote the intermediate latent variables. With the new notation, the neural ODE becomes to

dz(t)
dt = τθt (z(t)), (11)

and the log density of x in equation 10 is given by

log p(x) = log p(z) +
∫ 1

0
trace

(
∂

∂z(t)τ
θ
t

)
dt. (12)

Given a new data point x, to compute log p(x), we first need to integrate equation 11 to get the latent variable z, and
then integrate equation 12 to get the final result. Actually, we can do this in one pass by integrating the LHS of the
below equation [

x
0

]
+
∫ 1

0

[
τθt (z(t))

trace
(

∂
∂z(t)τ

θ
t

)] dt =
[

z
log p(x)− log p(z)

]
. (13)

And the complexity is O
(
D2T

)
.
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