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Energy-based models (EBMs), also known as unnormalized models, are quite flexible for probabilistic modeling. In this
note I mainly supplementing the skipped derivation details of [Song and Kingma, 2021].
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1 Energy-based models

The density given by an EBM is:

pθ(x) =
exp (−Eθ(x))

Z(θ)
, (1)

where Eθ(x) is called the energy, and Zθ =
∫

exp (−Eθ(x)) denotes the normalizing constant, which is intractable.
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2 Training with MLE

Maximum likelihood estimation (MLE) is the de facto standard for learning probabilistic models from i.i.d. data. The
gradient of the log likelihood with respect to the model parameter θ is given by:

∇θ log pθ(x) = −∇θEθ(x)−∇θ logZθ

= −∇θEθ(x)−∇θ log

∫
exp{−Eθ(x)}dx

= −∇θEθ(x)− 1

Zθ

∫
∇θ exp{−Eθ(x)}dx

= −∇θEθ(x) +

∫
pθ(x)∇θEθ(x)dx

= −∇θEθ(x)︸ ︷︷ ︸
positive phase

+Ex̃∼pθ(x̃) [∇θEθ(x̃)]︸ ︷︷ ︸
negative phase

,

(2)

in the third line, we switch the order of gradient and integral, the details about the validity is discussed in section 2.4 of
[Casella and Berger, 2002]. The positive phase tries to decrease the energy of real data samples, and the negative phase
tries to increase the energy of sample generated by the current model (this can be considered as reducing the model’s
incorrect beliefs about the world, which is analogous to what human beings do when they are dreaming) [Goodfellow
et al., 2016, Section 18.2]. The ”wake-sleep” fashion can be used in approximate inference settings [Goodfellow et al.,
2016, Section 19.5].
The difficulty is we need to sample from the model, which is unnormalized, and MCMC algorithms like the Langevin
Dynamic is utilized. Running MCMC until convergence is computationally expensive. Methods like Contrastive Divergence
(CD) [Hinton, 2002] are some alternative methods to approximate the gradient by some short run MCMC iterations.

2.1 Contrastive divergence

The main difficulty in ML training is in the negative phase, where samples from the model are needed. Hinton proposed

the Contrastive Divergence method to use samples from p
(1)
θ (x) = Π

(1)
θ pdata(x), which stands for the distribution by

running 1 step MCMC iteration over the samples from pdata(x). Thus the gradient in equation 2 over the training data
becomes to:

Epdata(x) [∇θ log pθ(x)] = Epdata(x) [−∇θEθ(x)] + Ex̃∼pθ(x̃) [∇θEθ(x̃)]

≈ Epdata(x) [−∇θEθ(x)] + E
x̃∼p(1)

θ (x̃)
[∇θEθ(x̃)] .

(3)

The mathematical motivation for such substitution is that the CD method is actually approximately minimizing the
following objective:

DKL [pdata(x) ‖ pθ(x)]−DKL

[
p
(1)
θ (x) ‖ pθ(x)

]
, (4)

and the gradient of θ w.r.t. it is:

∇θ

[
DKL [pdata(x) ‖ pθ(x)]−DKL

[
p
(1)
θ (x′) ‖ pθ(x′)

]]
= −Epdata(x) [∇θ log pθ(x)]−∇θp

(1)
θ (x′)

∂

∂p
(1)
θ (x′)

DKL

[
p
(1)
θ (x′) ‖ pθ(x′)

]
︸ ︷︷ ︸

1©

−∇θpθ(x′)
∂

∂pθ(x′)
DKL

[
p
(1)
θ (x′) ‖ pθ(x′)

]
︸ ︷︷ ︸

2©

,

(5)
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let’s examine 2©:

∇θpθ(x′)
∂

∂pθ(x′)
DKL

[
p
(1)
θ (x′) ‖ pθ(x′)

]
= ∇θpθ(x′)

∫
p
(1)
θ (x′)

∂

∂pθ(x′)
(− log pθ(x′)) dx′

= −
∫
p
(1)
θ (x′)

∇θpθ(x′)

pθ(x′)
dx′

= −
∫
p
(1)
θ (x′)∇θ log pθ(x′)dx′

= −E
p
(1)
θ (x′)

[∇θ log pθ(x′)] .

(6)

And we can see if we simply drop 1©, then equation 5 becomes to:

− Epdata(x) [∇θ log pθ(x)] + E
p
(1)
θ (x′)

[∇θ log pθ(x′)] = Epdata(x) [∇θEθ(x)] + E
p
(1)
θ (x′)

[−∇θEθ(x′)] , (7)

which is just the negative of equation 3. Although the discarded 1© makes CD a biased algorithm, the bias is always
small. Recently improved CD [Du et al., 2020] takes this term into consideration and makes the training procedure more
stable.

3 Training with score matching

The key observation is the score of the EBM ∇x log pθ(x) = −∇xEθ(x) is independent of the partition function Zθ.
Thus when we try to minimize the Fisher divergence between our data and the EBM, we can avoid dealing with the
intractable parition Zθ:

DF(pdata(x) ‖ pθ(x)) = Epdata(x)

[
1

2
‖∇x log pdata(x)−∇x log pθ(x)‖2

]
. (8)

3.1 Basic score matching

The problem is that ∇x log pdata(x) is unknown. However, with integration by parts, the second derivatives of Eθ(x)
can be used to replace the unknown ∇x log pdata(x) [Hyvärinen and Dayan, 2005].

J (θ) = Epdata(x)

[
1

2
‖∇x log pdata(x)−∇x log pθ(x)‖2

]
=

∫
pdata(x)

[
1

2
‖∇x log pdata(x)‖2 +

1

2
‖∇x log pθ(x)‖2 −∇x log pdata(x)>∇x log pθ(x)

]
dx

=

∫
pdata(x)

[
1

2
‖∇x log pθ(x)‖2

]
dx−

∫
pdata(x)

[
∇x log pdata(x)>∇x log pθ(x)

]
dx︸ ︷︷ ︸

1©

+const,

(9)

the computational difficulty exists in term 1©, and we can conquer that with integration by parts, in the following we use
d to denote the data dimensionality:

1© =

d∑
i=1

∫
pdata(x)

∂

∂xi
log pdata(x)

∂

∂xi
log pθ(x)dx

=

d∑
i=1

∫
∂

∂xi
pdata(x)

∂

∂xi
log pθ(x)dx,

(10)

3



and without loss of generality, we can examine the first term in the summation:∫
∂

∂x1
pdata(x)

∂

∂x1
log pθ(x)dx

=

∫ (∫
∂

∂x1
pdata(x)

∂

∂x1
log pθ(x)dx1

)
dx2 · · ·xd

=

∫ [
f(x2:d)−

∫
pdata(x)

∂

∂x1

∂

∂x1
log pθ(x)dx1

]
dx2 · · ·xd

= −
∫
pdata(x)

∂2

∂x2
1

log pθ(x)dx,

(11)

where

f(x2:d) = lim
a→∞,b→−∞

(
pdata(a,x2:d)

∂

∂x1
log pθ(a,x2:d)− pdata(b,x2:d)

∂

∂x1
log pθ(b,x2:d)

)
,

and this term is assumed to be zero since the regularity condition of our model is: (1) pdata(x) ∂
∂x log pθ(x) goes to zero for

any θ when ‖x‖ → ∞, (2) pdata(x) is differentiable, (3) Epdata(x)

[
‖∇x log pθ(x)‖2

]
and Epdata(x)

[
‖∇x log pdata(x)‖2

]
are finite for every θ. The third line of equation 11 comes from integration by parts, which can move the ∂

∂x1
from

pdata(x) to ∂
∂x1

log pθ(x).
With the above derivation, we have:

J (θ) =

∫
pdata(x)

[
1

2
‖∇x log pθ(x)‖2

]
dx +

d∑
i=1

∫
pdata(x)

∂2

∂x2
1

log pθ(x)dx + const

=

∫
pdata(x)

d∑
i=1

(
1

2

(
∂

∂xi
log pθ(x)

)2

+
∂2

∂x2
i

log pθ(x)

)
dx + const

= Epdata(x)

[
d∑

i=1

1

2

(
∂

∂xi
Eθ(x)

)2

− ∂2

∂x2
i

Eθ(x)

]
+ const.

(12)

In this way, we can learn the EBM when we can compute the score and Hessian of the energy function Eθ(x).

3.2 Denoising score matching

There two main shortcomings of basic SM. First, it is only applicable to continuous and unbounded data, which cannot
be used to digital data. Second is the computational cost of Hessian is O(d), and can not be applied to high dimensional
data. One way to alleviate the problem is to add some smooth noise ε to the data, and the resulting noisy distribution
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is q(x̃) =
∫
q(x̃|x)pdata(x)dx. The interesting is:

DF(q(x̃) ‖ pθ(x̃)) = Eq(x̃)

[
1

2
‖∇x̃ log q(x̃)−∇x̃ log pθ(x̃)‖2

]
= Eq(x̃)

[
1

2
‖∇x̃ log pθ(x̃)‖2

]
− Eq(x̃)

[
∇x̃ log pθ(x̃)>∇x̃ log q(x̃)

]
+ const

= Eq(x̃)

[
1

2
‖∇x̃ log pθ(x̃)‖2

]
−
∫
q(x̃)

q(x̃)

(
∇x̃ log pθ(x̃)>∇x̃q(x̃)

)
dx̃ + const

= Eq(x̃)

[
1

2
‖∇x̃ log pθ(x̃)‖2

]
−
∫
∇x̃ log pθ(x̃)>

∫
∇x̃q(x̃|x)pdata(x)dxdx̃ + const

= Eq(x̃)

[
1

2
‖∇x̃ log pθ(x̃)‖2

]
−
∫
∇x̃ log pθ(x̃)>

∫
q(x̃|x)∇x̃ log q(x̃|x)pdata(x)dxdx̃ + const

= Eq(x̃)

[
1

2
‖∇x̃ log pθ(x̃)‖2

]
−
∫ ∫

q(x̃|x)pdata(x)∇x̃ log pθ(x̃)>∇x̃ log q(x̃|x)dxdx̃ + const

= Eq(x̃)

[
1

2
‖∇x̃ log pθ(x̃)‖2

]
− Eq(x̃,x)

[
∇x̃ log pθ(x̃)>∇x̃ log q(x̃|x)

]
+ const

= Eq(x̃,x)

[
1

2
‖∇x̃ log q(x̃|x)−∇x̃ log pθ(x̃)‖22

]
+ const,

(13)
we can see in the last line of equation 13, both pdata(x) and the second derivative of pθ(x) are avoided. The underlying
intuition is that following the gradient of log pθ(x̃) at some corrupted point x̃ should ideally move us towards the clean
sample x [Vincent, 2011]. One thing should be kept in mind is the learned score corresponds to the noisy data distribution
q(x̃) rather than the original noise-free pdata(x), which makes DSM not a consistent estimator of pdata(x). But we can
attenuate the inconsistency to choose small noise level to make q(x̃) ≈ pdata(x).

3.3 Sliced score matching

[TODO]

4 Contrastive divergence and score matching

Surprisingly, there exist some close connections [Hyvarinen, 2007] between Contrastive Divergence (section 2.1) and Score
Matching (section 3.1). To see this, suppose we only run one step Langevin MCMC for CD, that is:

x′(θs) = x− ε2

2
∇xEθs

(x) + εz, x ∼ pdata(x), z ∼ N (z; 0, I), (14)

here θs denotes the current state of θ, and each x′ depends on θs. The Taylor series expansion of Eθ(x′) at x is given
by:

Eθ(x′) = Eθ(x) +∇>xEθ(x)(x′ − x) +
1

2
(x′ − x)>∇2

xEθ(x)(x′ − x) + o(ε2), (15)
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the corresponding CD gradient is given in the second line of equation 3:

Epdata(x) [−∇θEθ(x)] + E
x′∼p(1)

θ (x′)
[∇θEθ(x′)]

= Epdata(x) [−∇θEθ(x)] + Ez∼N (z;0,I)

[
∇θEθ

(
x− ε2

2
∇xEθs

(x) + εz

)]
.

(16)

From equation 15, we can further have:

− Eθ(x) + E
x′∼p(1)

θ (x′)
[Eθ(x′)]

= Ez∼N (0,I) [−Eθ(x) + Eθ(x′)]

= Ez∼N (0,I)

[
∇>xEθ(x)(x′ − x) +

1

2
(x′ − x)>∇2

xEθ(x)(x′ − x) + o(ε2)

]

= Ez∼N (0,I)

∇>xEθ(x)

(
−ε

2

2
∇xEθs

(x) + εz

)
︸ ︷︷ ︸

A

+
1

2
A>∇2

xEθ(x)A + o(ε2)


= −ε

2

2
∇>xEθ(x)∇xEθs(x) +

ε2

2
trace(∇2

xEθ(x)) + o(ε2)

≈ ε2

2

(
−∇>xEθ(x)∇xEθs

(x) + trace(∇2
xEθ(x))

)
= −ε

2

2

(
∇>x log pθ(x)∇x log pθ(x)−∇2

x log pθ(x)
)
,

(17)

we can further denote:

JCD(x,θ,θs) =
ε2

2

(
−∇>xEθ(x)∇xEθs

(x) + trace(∇2
xEθ(x))

)
=
ε2

2

(
d∑

i=1

− ∂

∂xi
Eθ(x)

∂

∂xi
Eθs

(x) +
∂2

∂x2
i

Eθ(x)

)
,

(18)

notice we always take θs as a constant, then:

∂

∂θk
Epdata(x) [JCD(x,θ,θs)] =

ε2

2
Epdata(x)

[
d∑

i=1

− ∂

∂θk

∂

∂xi
Eθ(x)

∂

∂xi
Eθs

(x) +
∂

∂θk

∂2

∂x2
i

Eθ(x)

]
, (19)

and if we examine the gradient w.r.t. θ of score matching (equation 12), we have:

∂

∂θk
J (θ) =

∂

∂θk
DF(pdata(x) ‖ pθ(x))

=
∂

∂θk

(
Epdata(x)

[
d∑

i=1

1

2

(
∂

∂xi
Eθ(x)

)2

− ∂2

∂x2
i

Eθ(x)

]
+ const

)

= Epdata(x)

[
d∑

i=1

∂

∂θk

∂

∂xi
Eθ(x)

∂

∂xi
Eθ(x)− ∂

∂θk

∂2

∂x2
i

Eθ(x)

]
.

(20)
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From the above and equation 5, we can conclude that:

Epdata(x) [∇θ log pθ(x)] ≈ Epdata(x) [−∇θEθ(x)] + E
x′∼p(1)

θ (x′)
[∇θEθ(x′)]

≈ −∇θ

[
DKL [pdata(x) ‖ pθ(x)]−DKL

[
p
(1)
θ (x′) ‖ pθ(x′)

]]
≈ −ε

2

2
∇θDF(pdata(x) ‖ pθ(x)),

(21)

the approximation in the first line comes from using one step Langevin MCMC instead of infinite many, the one in the
second line comes from dropping 1© in equation 5, and the one in the third line comes from dropping o(ε2) from Taylor
series expansion.
What equation 21 tells us is that every time we add Epdata(x) [−∇θEθ(x)] + E

x′∼p(1)
θ (x′)

[∇θEθ(x′)] multiplied by a

stepsize to the current θ to do approximate MLE, we are implicitly and approximately doing gradient descent of the
Fisher divergence between pdata(x) and our model pθ(x).

4.1 Training with Noise Contrastive Estimation

(This closely related to density ratio estimation via binary classification.)
In NCE we introduce a noise distribution pn(x) which we can sample from and evaluate density, for example we can
choose pn(x) = N (x; 0, I). We also introduce a pseudo binary label y which is 1 if the point is from pdata(x) and is 0
if the point is from pn(x). Then we can define a mixture distribution of samples from pdata and pn:

pn,data(x) = p(y = 1)pdata(x) + p(y = 0)pn(x),

then the posterior of y = 0 is given by:

pn,data(y = 0 | x) =
pn,data(x | y = 0)p(y = 0)

pn,data(x)

=
pn(x)p(y = 0)

p(y = 1)pdata(x) + p(y = 0)pn(x)

=
pn(x)

νpdata(x) + pn(x)
,

(22)

where ν = p(y = 1)/p(y = 0). Similarly we can define a mixture distribution of pdata and pθ and the posterior of y = 0
is given by:

pn,θ(y = 0 | x) =
pn(x)

νpθ(x) + pn(x)
, (23)

In NCE, we indirectly fit pθ(x) to pdata(x) through maximizing:

Epn,data(x,y) [log pn,θ(y | x)] , (24)

where Eθ(x) and Zθ are taken independently, in other words, there is no model restriction that Zθ =
∫

exp {−Eθ(x)} dx.
When the classifier is powerful enough, the optimal pn,θ∗(y | x) will recover pn,data(y | x) and pθ∗(x) will recover pdata(x).
Also, NCE provides the normalizing constant of an Energy-Based Model as a by-product of its training procedure.
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4.1.1 relation with GAN

The optimal classifier between two distinct distributions p1(x), p2(x) , is given by:

D∗(x) =
p1(x)

p1(x) + p2(x)
=

1

1 + exp
(
− log p2(x)

p1(x)

) = σ(− log
p2(x)

p1(x)
).

Where σ(·) denotes the sigmoid function. In the above, we assume that the prior probability that p(D = 1) = p(D =
2) = 0.5. This optimal classifier assumes that we use logistic regression to train the classifier. In the reverse direction,
we have that logistic regression gives us a method to estimate the density which transform the density (ratio) estimation
problem into a classification problem.

4.2 Minimizing the Stein Discrepancy

The Stein Discrepancy is defined as:

S (p ‖ q) = sup
f∈F

Ex∼pdata
[∇x log pθ(x)f(x) + trace (∇xf(x))] , (25)

note that training EBMs with Stein Discrepancy circumvents sampling from the EBM and only relies on the score of the
model [Grathwohl et al., 2020].

4.2.1 Equivalence between Fisher divergence and learned Stein Discrepancy

[TODO]
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