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Abstract. In multi-task learning (MTL), multiple prediction tasks
are learned jointly, such that generalization performance is improved
by transferring information across the tasks. However, not all tasks
are related, and training unrelated tasks together can worsen the pre-
diction performance because of the phenomenon of negative transfer.
To overcome this problem, we propose a novel MTL method that can
robustly group correlated tasks into clusters and allow useful infor-
mation to be transferred only within clusters. The proposed method
is based on the assumption that the task clusters lie in the low-rank
subspaces of the parameter space, and the number of them and their
dimensions are both unknown. By applying subspace clustering to
task parameters, parameter learning and task grouping can be done
in a unified framework. To relieve the error induced by the basic lin-
ear learner and robustify the model, the effect of hidden tasks is ex-
ploited. Moreover, the framework is extended to a multi-layer archi-
tecture so as to progressively extract hierarchical subspace structures
of tasks, which helps to further improve generalization. The opti-
mization algorithm is proposed, and its effectiveness is validated by
experimental results on both synthetic and real-world datasets.

1 Introduction
Multi-task learning (MTL) aims to learn multiple related tasks to-
gether to achieve better generalization performance than independent
learning in each task [7, 38, 4]. Different assumptions about task re-
latedness result in different ways of information sharing across tasks.
Some assume that all task parameter vectors share a common set
of active features or a common prior [28, 39], while some assume
that they lie in a shared low-rank subspace [1, 8]. However, due to
the phenomenon of negative transfer [31, 37], the generalization per-
formance will degrade if information is transferred among unrelated
tasks. Thus the above assumptions all face the problem of how to
decide which tasks should transfer information to each other.

To resolve this issue, grouped MTL methods assume that differ-
ent tasks form several clusters, each of which consists of similar
tasks, and information is restricted to transfer only within each clus-
ter. Some methods assume that similar tasks should have parameters
that lie close to each other in terms of Euclidean distance [15, 41, 14].
However, these methods all neglect the possible negative correlation
among tasks. To address this problem, another line of methods as-
sumes that each task cluster exists in a low-rank subspace of the pa-
rameter space. Under this assumption, some methods do task group-
ing by solving a mixed integer programming problem [18]. Some
methods further assume that task parameters share the same set of
latent basis and tasks in the same cluster should have similar sparse

representation with that basis [20, 16]. Nevertheless, in these meth-
ods, we need to know the number of task clusters or the dimension
of the latent basis in advance, which is usually unavailable in reality.

Recently, a more appealing approach was proposed to directly
learn the number of task clusters, their dimensions and the cluster
structure from data. Instead of learning a set of latent basis, all the
task parameters are treated as the basis and can be reconstructed by
a linear combination of other tasks’ parameters [21]. It is worth not-
ing that, if the task parameters are treated as fixed data points, then
finding out their cluster structure is actually the problem of subspace
clustering (SC) [32]. However, the difference is the clustering objects
in grouped MTL are task parameters, which are learned from data,
probably resulting in a large deviation from the ground-truth values.
So directly using the learned task parameters as a dictionary to rep-
resent themselves as SC does can potentially amplify such an error
and hurt the MTL model’s generalization performance.

Inspired by Latent Low-Rank Representation (LatLRR) [23, 40],
which achieves robust subspace clustering by utilizing the effect of
hidden data, we propose the Hidden Tasks Enhanced Multi-Task
Learning (HTEMTL) method 1. The key idea is to perform subspace
clustering on task parameters by exploiting the effect of hidden tasks,
so as to robustify the procedure of task grouping and consequently
improve the MTL model’s generalization performance. In addition,
to explore deep latent group structures, we propose the progressive
HTEMTL (pHTEMTL) by a multi-layer architecture that cascades
multiple hidden task enhanced self-expressive layers. For empirical
studies, we compare the proposed methods with state-of-the-art MTL
methods on both synthetic and real-world datasets. The experimental
results validate the effectiveness of the proposed method. The contri-
butions of this paper can be summarized as follows:

1. We propose a novel grouped MTL method, named HTEMTL,
that incorporates subspace clustering with MTL, and meanwhile
utilizes the effect of hidden tasks, leading to improved generaliza-
tion ability.

2. We extend HTEMTL to a multi-layer model to progressively re-
cover hierarchical group structure, which further robustifies the
model by deep hidden tasks enhancement.

3. We develop optimization algorithms for both HTEMTL and pH-
TEMTL, and empirically validate the effectiveness on synthetic
and real-world datasets.

1 The code is provided at: https://github.com/jiachunjin/HTEMTL



2 Related Work
The existing MTL methods can be separated into two main cate-
gories: the ungrouped ones and grouped ones. The ungrouped MTL
methods directly assume that all the tasks are related [1, 2]. To de-
ploy these methods on real-world applications, domain knowledge is
required to make sure that all the input tasks are related, such that
negative transfer [31, 25, 37] can be avoided. For the grouped MTL
methods, one line of methods uses the Euclidean distance between
task parameters to measure the task similarity. In [15], task parame-
ters are assumed to stay close to each other within a task cluster, and
parameters in different task clusters are far away from each other. In
[43], one representative task is identified for each task cluster, and
all the other parameters in that cluster are assumed to stay close to it.
However, they fail to capture the negative correlation between tasks.

To remedy this problem, another line of the grouped MTL methods
takes the assumption that the task parameters in the same cluster lie in
a shared low-rank subspace. There are three different ways to achieve
this. The first way is to do task grouping by solving a mixed integer
programming problem and impose different regularizations on each
cluster of task parameters. For instance, the nuclear norm is used in
[18] to promote low-rank structure, and the l2,1-norm is used in [19]
to induce row sparsity of the task parameters in each cluster.

The second way is to decompose the task parameter matrix into the
product of latent basis and latent assignment. In [20], the subspaces
of task clusters are assumed to be correlated, and sparsity pattern of
the latent assignment matrix is promoted to get a flexible task group-
ing structure. In [16], the row-sparsity of the latent basis is promoted,
and the k-support norm [3] is regularized on the latent assignment,
in order to simultaneously perform variable selection and learn the
group structure. In [35, 34], the generalized k-block-diagonal struc-
ture of the assignment matrix is pursued to reduce inter-group infor-
mation transfer. A common issue of the methods is how to manually
determine the dimension of the latent basis.

The third way utilizes the self-expressiveness property of the task
parameters. Instead of learning a new latent basis, all the observed
tasks are used as the dictionary to represent themselves. The task
parameter matrix is thus decomposed into the product of itself and
a task correlation matrix. In this way, the number of clusters and
their dimensions can be directly learned from data. The learned task
correlation matrix is always block-diagonal up to some column and
row permutations, and reveals the task cluster structure. In [21, 30],
all task parameters are reconstructed as non-negative sparse linear
combinations of other task parameters to achieve asymmetric trans-
fer. In [26], a very similar assumption is taken and the trace Lasso
[12] regularizer is used to adaptively group tasks. In [36], a unified
framework is proposed to identify outlier tasks, and construct the rest
task parameters as linear combinations of some representative task
parameters. However, in these methods, the learned task parameters
may have a large deviation from the ground-truth values and directly
using the learned parameters as a dictionary can amplify such a devi-
ation, and consequently hurt the MTL model’s generalization perfor-
mance. To relieve this issue, our proposed method can robustly group
correlated tasks into clusters by exploiting the effect of hidden tasks,
and allow useful information to be transferred only within clusters.

3 Preliminary
3.1 Notations

Given T tasks, all the tasks share the same feature space with dimen-
sion d. Each task consists of a set of training data Dt = {Xt,yt},

where Xt ∈ Rd×Nt and yt ∈ RNt , with Nt being the number of
training samples of the tth task. Following the common multi-task
learning paradigm, the linear model yt = X>t w:,t is adopted, where
w:,t is the tth column of W ∈ Rd×T , which denotes the task pa-
rameter vector for the tth task, ∀t ∈ {1, 2, ..., T}. We use L(·, ·) to
denote the total training loss, i.e., L(D,W) =

∑
t l(Dt,w:,t), with

l being the loss function. Specifically, we use the squared loss for re-
gression tasks and the logistic loss for classification tasks. Given two
arbitrary matrices A,B ∈ Rp×q , [A,B] ∈ Rp×2q denotes column
concatenation and [A; B] ∈ R2p×q denotes row concatenation.

3.2 Subspace Clustering

Given a set of data points sampled from a union of subspaces, sub-
space clustering (SC) aims to partition the data points into their un-
derlying subspaces [32]. Recent SC algorithms are developed mainly
based on the self-expressiveness model. In this model, a point is ex-
pressed as a linear combination of the other data points from the same
subspace, i.e., xi = Xci, where X is the data matrix and the ith col-
umn ci of C corresponds to the representation of the ith data point
xi [11]. When some proper regularizer is imposed on C, it holds a
block-diagonal structure, in which each block indicates a data sub-
space. For instance, Low-Rank Representation (LRR) [22] solves the
following optimization problem to do subspace clustering:

min
C
‖C‖∗, s.t. X = XC, (1)

where ‖ · ‖∗ denotes the nuclear norm of a matrix. We write the
skinny SVD of the data matrix X as U0Σ0V

>
0 . If the data matrix

X is noise-free, i.e., all the data points definitely come from the un-
derlying union of subspaces, the unique optimal solution to (1) will
be C∗ = V0V

>
0 . It is known as the shape interaction matrix [17],

which is quite sensitive to the noise in X. When the subspaces are
independent, C∗ forms a block-diagonal matrix and each block indi-
cates a cluster [9].

4 The Proposed Method
4.1 Task-Level Subspace Clustering

The fundamental assumption of our model is that all the task param-
eters come from a union of low-rank subspaces, and the parameters
of related tasks lie in the same subspace. In the grouped MTL scenar-
ios, if the task parameters are taken as fixed points, we can simply do
task-level subspace clustering by replacing the data matrix X with
the task parameter matrix W in (1). In order to jointly carry out data
fitting and task-level subspace clustering, we propose the naive ver-
sion of HTEMTL:

min
W,C
L(D,W) +

λ

2
‖W −WC‖2F + γ‖C‖∗ +

β

2
‖W‖2F . (2)

Here λ, γ and β are non-negative hyper-parameters, that need to be
determined via validation. The last regularization term in (2) controls
the model complexity. For simplicity, we omit the intercept in the
linear model by adding an extra dimension with value one to the end
of all the data vectors.

4.2 Hidden Tasks Enhanced Multi-Task Learning

In this subsection, we exploit the effect of hidden tasks in the MTL
scenarios, so as to robustify the performance of the MTL model.



Since the task parameters learned from data are not reliable, some
learned parameters may be far away from the ground-truth values.
Thus only using the learned parameters as the dictionary to repre-
sent themselves, as the model does in (2), might potentially amplify
the error. To relieve this problem, we can extend the original dictio-
nary by concatenating W with the hidden task parameters H from
some unobserved tasks, and assume that each column of H is a hid-
den task sampled from the same union of subspaces as W, which is
unobserved in the dataset but crucial for representing the underlying
task subspaces. In this way, the model in (2) becomes:

min
W,C
L(D,W)+

λ

2
‖W− [W,H]C‖2F +γ‖C‖∗+

β

2
‖W‖2F . (3)

Using H in (3) enables the ability of representing the underlying sub-
spaces during data fitting, thereby enhancing task clustering. How-
ever, it is not solvable since we never know what H exactly is. In-
spired by LatLRR [23], we transform the formulation and make it
solvable. Suppose that both W and H are known and fixed, the task-
level subspace clustering problem can be formulated as:

min
C
‖C‖∗, s.t. W = [W,H]C. (4)

Let the SVD of [W,H] be UΣV> = UΣ[VW ; VH ]>, where V
is partitioned into a row concatenation of two submatrices, such that
W = UΣV>W and H = UΣV>H . By left multiplying Σ−1U> to
both sides of the constraint of (4), the problem is equivalent to:

min
C
‖C‖∗, s.t. V>W = V>C. (5)

Since both VW and V are known, it has a unique optimal solution:
C∗ = VV>W = [VW ; VH ]V>W [22]. By re-plugging C∗ into the
constraint of (4), it becomes:

W = [W,H][VWV>W ; VHV>W ]

= WVWV>W + HVHV>W

= WVWV>W + UΣV>HVHV>W

= WVWV>W + UΣV>HVHΣ−1U>W. (6)

Given Z = VWV>W and L = UΣV>HVHΣ−1U>, task parame-
ters W can always be represented as the following

W = WZ + LW. (7)

Here Z works as the task correlation matrix, which should hold a
block-diagonal structure and reveal the task clusters like C in (2).
And L is the feature correlation matrix, that enables W to be recon-
structed from its row space.

In reality, the hidden task matrix H is unreachable. Therefore, in-
stead of exactly recovering Z and L from data, we approximately
recover the effect of hidden tasks by solving

min
Z,L

rank(Z) + rank(L), s.t. W = WZ + LW, (8)

where rank(·) denotes the rank of a matrix. From our basic as-
sumption that all the task parameters come from a union of low-
rank subspaces, the task parameter matrix W should also hold a
low-rank structure. Since rank(W) ≤ min{rank(W), rank(Z)}+
min{rank(W), rank(L)}, minimizing both rank(Z) and rank(L)
can meet the requirement.

Figure 1: The frameworks of HTEMTL and pHTEMTL. HTEMTL
builds a shallow model for task parameters w = vec(W) and reg-
ularizes them with the HTE layer, which is a linear fully-connected
self-expressive layer that reconstructs w by Cw with weights C =
Z ⊗ Id + IT ⊗ L. In contrast, pHTEMTL extends HTEMTL to a
deep model for w, in order to progressively extract hierarchical struc-
tures of tasks. Once w is obtained, the prediction yt,i for regression
is made by yt,i = w>(xt,i ⊗ et), where et is the task indicator
vector with the tth entry being 1 and 0 otherwise.

Since regularizing the rank operator usually results in a NP-hard
problem, as a common practice, we seek the convex surrogate of
the non-convex rank operator. Here we use the nuclear norm to re-
place the rank operator, and obtain Hidden Task Enhanced Multi-
Task Learning (HTEMTL):

min
W,Z,L

L(D,W) +
λ

2
‖W −WZ− LW‖2F

+ γ(‖Z‖∗ + ‖L‖∗) +
β

2
‖W‖2F . (9)

It is worth noting that, if we ignore the matrix L in (9), the model
will degrade to (2). Intuitively, introducing L allows W to be recon-
structed from both the column direction and the row direction, that
enables HTEMTL to utilize more useful information. In addition,
replacing the original constraint W = WC to W = WZ + LW
drives the final task correlation away from the shape interaction ma-
trix [17], which makes the model less sensitive to the deviation of W
from its ground-truth values, and thus improves generalization.

4.3 Progressive HTEMTL (pHTEMTL)

HTEMTL essentially performs parameter learning in MTL by re-
covering the subspace structures of tasks via a single-layer model.
For clarity, we can reformulate (7) by

w = (Z⊗ Id + IT ⊗ L) w = Cw, (10)

where w = vec(W) is the vectorization of W and ⊗ denotes the
Kronecker product. By treating each entry wj of w as a node in a
network, (10) is represented by a fully-connected linear layer, namely
hidden tasks enhanced self-expressive layer (HTE layer), as wj is a
linear combination of w with the jth row of C being its coefficients.
Fig. 1 shows the framework of HTEMTL with the HTE layer.



However, HTEMTL cannot extract deep hierarchical information
embedded in the parameter space, due to its single-layer nature as
shown in (10). Here we present an effective approach to extend it to
a multi-layer one, in order to detect deep task group structures, that
helps to further improve generalization. To this end, a hierarchical
architecture of model parameters is developed by cascading multiple
HTE layers, so that subspace structures can be refined layer by layer.
Specifically, in the kth layer of total m layers, the parameters wk =
vec(Wk) is recursively represented by

wk = Ck−1wk−1 =

k−1∏
`=1

C`w1, (11)

where C` = Z`⊗ Id+ IT ⊗L` denotes the layer weights, and Wm

in the last layer is used to calculate the loss L(D,Wm). In this way,
Wm is learned progressively across multiple layers, extracting deep
task subspace structures by Zm, which is enhanced by deep hidden
tasks through Lm.

Therefore, based on Eqs. (9) and (11), we propose the progressive
HTEMTL (pHTEMTL) method:

min
W1,

{Zk},{Lk}

L(D,Wm) +

m∑
k=1

(λk
2
‖Wk −WkZk − LkWk‖2F

+ γk(‖Zk‖∗ + ‖Lk‖∗)
)

+
β

2
‖W1‖2F , (12)

where wk =
∏k−1
`=1 C`w1 (k = 2, 3, ...,m). Instead of directly

setting appropriate values of λks and γks, we use λk = λ
φk−1 and

γk = γ

φk−1 to control the strength of the HTE regularizer in the
kth layer, and treat φ as a positive hyperparameter. Obviously, pH-
TEMTL is equivalent to HTEMTL whenm = 1, but it has a chance
to learn more accurate and robust task subspace structures based on
deep information extracted in previous layers when m > 1.

4.4 Probabilistic Interpretation

In this subsection, we show that HTEMTL is actually related to the
Maximum a Posterior (MAP) solution of a probabilistic model, from
which perspective it is also related to several popular MTL methods.
We first rewrite the second term of (9) with (10):

‖W −WZ− LW‖2F
=‖w − (Z⊗ Id)w − (IT ⊗ L)w‖22
=‖ (IdT − (Z⊗ Id)− (IT ⊗ L)) w‖22
=w>Mw, (13)

where M is defined by2

M = (I− Z⊗ I− I⊗ L)2. (14)

Based on (13), we can reformulate (9) by a compact form:

min
w,Z,L

L(D,w) +
λ

2
w>(M +

β

λ
I)w + γΩ(Z,L). (15)

Given the compact form in (15), to learn multiple tasks, the MAP
estimation of parameters w given D is

2 We omit the subscript of the identity matrix I for clarity.

p(w|X,y) ∝ p(w) ·
T∏
t=1

p(yt|Xt,wt), (16)

where X = [X1,X2, ...,XT ] and y = [y1; y2; ...; yT ]. The Maxi-
mum Likelihood Estimation (MLE) part p(y|X,w) can be modeled
by the Gaussian distribution and the Bernoulli distribution, leading
to the squared loss and the logistic loss, respectively. The prior part
p(w) in (16) is crucial to HTEMTL, as it should hold the fundamen-
tal assumption that task parameters w come from a union of low-rank
subspaces. According to (15), HTEMTL actually defines the prior
by matrix-variate normal distribution [10] as

p(w) = N
(

0, (M +
β

λ
I)−1

)
, (17)

where (M + β
λ
I)−1 is a dT × dT positive definite matrix indicating

the covariance between elements of w. Different from many popular
MTL methods focusing on modeling either task covariance [15, 41,
21] or feature covariance [28, 29, 24], according to (17), HTEMTL
enables to capture both task correlation and feature correlation by Z
and L, respectively.

5 Optimization

In this section, we present the optimization algorithm of pHTEMTL,
and the algorithm of HTEMTL can be simply obtained withm = 1.
The objective function in (12) is bi-convex w.r.t. W1, {Zk} and
{Lk}, respectively, so the alternating optimization is applied to solve
for the variables, which is guaranteed to converge to the local mini-
mum3.

5.1 Initialization

Since (12) is a non-convex problem, initialization can affect the re-
sult. Therefore, for pHTEMTL, we execute HTEMTL to initialize
W1, Z1 and L1 for the first layer, and set Zk = Z1 and Lk = L1

(k = 2, 3, ...,m) for the other layers. For HTEMTL, we initialize
W by single task learning with the l2-norm regularization, and sim-
ply set Z,L = 0.

5.2 Updating W1

With fixed {Zk} and {Lk}, the subproblem becomes:

min
W1

L(D,wm) +

m∑
k=1

(
λk
2
‖wk −Ckwk‖22

)
+
β

2
‖w1‖22, (18)

where wk = Ck−1wk−1 (k = 2, 3, ...,m). We propose to use gra-
dient descent to solve this subproblem. Let∇W1L be the gradient of
L(D,Wm) w.r.t. W1, it is recursively calculated based on the chain
rule of derivatives, i.e.,

∇Wi−1L = ∇WiL Z>i−1 + L>i−1∇WiL, (19)

3 Although large values of m may complicate the optimization landscape,
m = 2 or 3 is typically recommended in experiments (Fig. 5), and the
algorithm usually converges within a small number of iterations.



where i = 2, 3, ...,m. Similarly, the gradient ∇W1Q of the HTE
regularizerQ w.r.t. W1 is obtained by

∇Wi−1Q = ∇Wi−1Qi−1 +

m∑
k=i

(
∇WiQk Z>i + L>i ∇WiQk

)
,

(20)
where i = 2, 3, ...,m,∇WkQk = Hk (∀k) is the kth component of
∇WkQ, and Hk is defined by

Hk = ∆Wk −∆WkZ
>
k − L>k ∆Wk, (21)

with ∆Wk = Wk −WkZk − LkWk. Thus, with certain stepsize
η, the update of W1 in each step is:

W1 = W1 − η (∇W1L+∇W1Q+ βW1) . (22)

5.3 Updating {Zk}
With fixed W1 and {Lk}, we propose to update {Zk} for (12) from
the mth HTE layer to the 1st layer. We fix the rest of weights for the
ith layer, and obtain the problem w.r.t. Zi:

min
Zi

L(D,wm) +
m∑
k=i

(
λk
2
‖wk −Ckwk‖22

)
+ γi‖Zi‖∗, (23)

where wk =
∏k−1
`=i C`wi, ∀k > i, with wi =

∏i−1
`=1 C`w1. It is

a convex but non-smooth problem, and thus we propose to solve it
by proximal method [27], which decomposes its objective into two
components, smooth f(Zi) and non-smooth g(Zi):

f(Zi) =L(D,wm) +

m∑
k=i

(
λk
2
‖wk −Ckwk‖22

)
,

g(Zi) =γi‖Zi‖∗. (24)

In the jth iteration, the optimal solution is calculated by the following
proximal operator:

min
Zi

1

2η
‖Zi − (Zji − η∇Zif)‖2F + γi‖Zi‖∗, (25)

where ∇Zif is the gradient of f(Zji ) w.r.t. Zi and η is a stepsize.
In each iteration, the update in (30) is done by the singular value
thresholding (SVT) algorithm [6]. Let ∇ZiL and ∇ZiQ denote the
derivatives of the loss function and the HTE regularizer w.r.t. Zi,
respectively, we have ∇Zif = ∇ZiL +∇ZiQ. Based on the chain
rule of derivatives,∇ZiL is recursively calculated as

∇ZiL = W>
i ∇Wi+1L, (26)

where i = 1, 2, ...,m and ∇WL is calculated by (19). Similarly,
∇ZiQ is obtained by

∇ZiQ = −λiW>
i ∆Wi+λi+1W

>
i Hi+1+

m∑
k=i+2

W>
i ∇Wi+1Qk,

(27)
where∇WQ and H are given in (20) and (21), respectively.

5.4 Updating {Lk}
As it is similar to the step on updating {Zk}, we omit the procedure
for simplicity and present it in the supplement.

5.5 Computational Analysis

The procedure for the above algorithm is provided in the supple-
ment. In terms of time complexity, when updating W1, each iteration
of the gradient descent algorithm costs O (mdT (d+ T ) + dN),
where N =

∑T
t=1Nt. To update {Zk} and {Lk}, in each step

of proximal gradient algorithm, calculating ∇Zf and ∇Zf takes
O (mdT (d+ T ) + dN), and conducting SVT needs O(T 3) and
O(d3) for Z and L, respectively. Thus, the complexity is linear w.r.t.
the number N of samples and the number m of layers.

6 Experiments

6.1 Experimental Setting

We compare the proposed methods with six benchmark methods.
Single-task learning (STL) learns each task independently with the
l2-norm regularization. GOMTL [20] factorizes the parameter ma-
trix into a product of a shared latent basis and a sparse latent as-
signment matrix for task grouping and overlapping. AMTL [21] as-
sumes that each task is represented by a sparse non-negative linear
combination of other tasks, and thus information is transferred be-
tween tasks in an asymmetric manner. GAMTL [26] assumes that
each task is a linear combination of other tasks, and the trace Lasso
[12] is imposed on the correlation matrix to maintain a group struc-
ture. GBDSP [35] uses a k-block diagonal regularizer to encourage
the latent basis to have exactly k blocks, and thus inter-group infor-
mation transferring is punished. However, it needs k as prior knowl-
edge. KMSV [8] jointly learns multiple tasks based on tight approx-
imations of the rank operator.

The hyperparameter for STL with the l2-norm regularization is
selected from {10−5, 10−4, · · · , 1}. For GOMTL, AMTL, GAMTL
and GBDSP, the search grids of their hyperparameters are set to the
recommendation in the original papers, and the codes are obtained
from the authors. For KMSV, the number of smallest singular values
is selected from {3, 5, 7, 9, 11}. For pHTEMTL, we set the number
m of layers by m = 2 or 3. The search grids for λ and γ are both
set to {10−4, 10−3, · · · , 102}, and β’s and φ’s search grids are set
to {10−3, 10−2, 10−1, 1}. For regression tasks, 25% of the dataset is
randomly drawn as the testing set and the rest as the training set, and
10-fold cross validation is used to select the best hyperparameter. For
classification tasks, the data is split into the training set, the valida-
tion set and the testing set. All experiments are repeated for 10 times
by using different subsets of the data. For regression tasks, the two
evaluation metrics we adopt are root Mean Squared Error (rMSE)
and Mean Absolute Error (MAE). For classification tasks, we use
Error Rate (ER) and Area Under ROC Curve (AUC) to measure the
performance. All metrics are formally defined in the supplement.

6.2 Synthetic Data

We generate a synthetic dataset with d = 150. There are 4 clus-
ters of task parameters with dimensions 3, 4, 4 and 5, that contain
4, 5, 5 and 6 binary classification tasks, respectively. The procedure
of generating the task parameters is summarized as the following: (1)
We generate a set of orthogonal basis of the d-dimensional space by
applying QR decomposition to a full rank d× d matrix. (2) All sub-
spaces’ bases are chosen as disjoint subsets of the orthogonal basis
produced by the last step. (3) The task parameters are generated by
multiplying the subspace’s basis with a random vector, in which each
element of the vector is sampled from a uniform distribution in the



(a) Ground-truth (b) STL (c) GOMTL

(d) GBDSP (e) AMTL (f) GAMTL

(g) HTEMTL (Z) (h) pHTEMTL (Z1) (i) pHTEMTL (Z2)

Figure 2: The task correlation matrices learned by different algo-
rithms on the synthetic dataset. Each matrix is an average of 10 trials.
The generated dataset has 4 task clusters, that contain 4, 5, 5 and 6
binary classification tasks, respectively.

interval of [−0.5, 0.5]. With the simulated task parameters, we gen-
erated 200 training samples, 100 validation samples and 100 testing
samples for each task. For the i-th observation of the t-th task, we
have xit ∼ N (0, Id), and yit = sign(w>t xit + N (0, 0.01)), where
N (µ,Σ) denotes the Gaussian distribution with mean µ and covari-
ance matrix Σ.

Fig. 2 shows the average task correlation matrices from 10 tri-
als. The task correlation matrix shown in (a) is produced by directly
applying LRR to the ground-truth task parameters. Similarly, the re-
sult in (b) is produced by applying LRR to the task parameters W
learned by STL. However, the task correlation structure is poorly re-
covered, mainly because of the deviation of the learned task param-
eters from the ground-truth values. For GOMTL and GBDSP, both
methods factorize the task parameter matrix with W = LS, and we
represent their task correlation matrices Z with S>S in (c) and (d).
For AMTL, GAMTL, and HTEMTL, the task correlation matrices
Z are directly produced, which are shown in (e), (f) and (g), respec-
tively. For pHTEMTL, Z1 and Z2 are obtained by its two layers,
which are shown in (h) and (i), respectively. To make the structure
clearer, we plot (|Z|+ |Z|>)/2 and normalize all its elements to the
scale of [0, 1]. We can see that the task correlation learned by AMTL
is much worser than the others. This is probably because it holds a
strong assumption that all the task parameters are reconstructed by a
positive linear combination of the others, i.e., all task parameters stay
in the same quadrant of the feature space. We see that HTEMTL
and pHTEMTL can recover the task cluster structure better than the
other methods, and the deeper the layer, the clearer the structure.
The testing results in terms of ER and AUC are reported in the first
two rows of Table 1, where the best two results are highlighted in
boldface. As shown in Table 1, we find out that the better a method
can recover the task correlation matrix, the better performance it can
achieve. Thus, HTEMTL and pHTEMTL perform the best among
all the comparing methods.

6.3 Real-world Data

In experiments, we use four real-world multi-task datasets:

• Fashion-MNIST4: This is a dataset comprised of 10 types of
clothing, such as shoes, t-shirts and more. We reduce the dimen-
sionality to 128 by Principal Components Analysis (PCA) to re-
tain 95% variance. There are

(
10
2

)
= 45 one vs. one tasks in total.

For each task, we construct a training set by randomly choosing
10 positive samples and 10 negative samples, and there are 100
positive samples and 100 negative samples in the validation set
and the testing set.

• CIFAR-105: Like Fashion-MNIST, this is also an image classifi-
cation dataset with 10 classes. Again, we generate

(
10
2

)
= 45 one

vs. one binary classification tasks. The dimensionality is reduced
to 210 after applying PCA to retain 95% variance. In each task,
we randomly drawn 100 training samples from each class as the
training set. For the validation set and the testing set, there are 400
samples from each class.

• AWA2-Attribute6: This dataset is constructed based on the AWA-
2 dataset [33]. There are 85 tasks. Each task is a binary classifi-
cation on recognizing whether a given attribute is presented in a
given instance. We adopt the ILSVRC-pretrained ResNet101 fea-
ture [33] and use PCA to reduce the dimensionality to 467 to re-
tain 90% variance. The training set for each task is generated by
randomly choosing 50 positive samples and 50 negative samples.
Both the validation set and the testing set have 100 positive sam-
ples and 100 negative samples.

• School7: This is a regression dataset which is consisted of exam
scores of students from 139 schools. Each school corresponds to a
task. We use the features provided in the MALSAR package [42],
and the dimension of the feature space is 28. We use 75% of the
dataset as the training set and the left 25% as the testing set.

The last twelve rows of Table 1 show the prediction performance
of the eight comparing methods on the six real-world datasets. In
most cases, MTL methods can achieve better generalization perfor-
mance than STL. This indicates the effectiveness of learning tasks
together. Both HTEMTL and pHTEMTL can outperform the other
comparing algorithms on all the classification datasets in terms of
ER, and on most classification datasets in terms of AUC. This con-
firms our hypothesis that exploiting the effect of hidden tasks can
achieve better task grouping effect and boost the generalization per-
formance. GBDSP’s performance is close to ours, but it requires the
number of task clusters and the dimension of the latent basis as extra
prior knowledge, which are usually not available in practice and need
to be determined by validation, making it very time-consuming. For
the School dataset, both HTEMTL and pHTEMTL fail to outper-
form AMTL, GBDSP and KMSV, probably because the tasks in this
dataset are quite similar with each other, and the subspace structure
of the task clusters is not obvious [26].

6.4 Effectiveness of Hidden Tasks Enhancement

In this subsection, we study the effect of hidden tasks. Deactivating
the effect of hidden tasks is equivalent to set the matrix L in (9) and
(12) to be zero. In this way, HTEMTL degrades to the naive model in
(2), and pHTEMTL degrades to a naive one that ignores deep hidden

4 https://github.com/zalandoresearch/fashion-mnist
5 https://www.cs.toronto.edu/ kriz/cifar.html
6 https://cvml.ist.ac.at/AwA2/
7 https://github.com/jiayuzhou/MALSAR



Table 1: Experimental results (mean ± std) with different evaluation metrics. The best two results are highlighted in boldface.

Dataset Measure STL GOMTL AMTL GAMTL GBDSP KMSV HTEMTL pHTEMTL

Synthetic ER↓ 0.2392±0.0137 0.2271 ±0.0122 0.2377 ±0.0168 0.2233 ±0.0203 0.2179±0.0119 0.2340±0.0115 0.2076±0.0128 0.2042±0.0044
AUC↑ 0.8535±0.0415 0.8617±0.0464 0.8651±0.0371 0.8795±0.0348 0.8795±0.0313 0.8235±0.0281 0.8906±0.0362 0.8868±0.0099

Fashion- ER↓ 0.1097±0.0042 0.1017±0.0045 0.0751±0.0035 0.0717±0.0061 0.0847±0.0066 0.1012±0.0084 0.0699±0.0130 0.0710±0.0051
MNIST AUC↑ 0.9812±0.0107 0.9937±0.0032 0.9824±0.0086 0.9893±0.0078 0.9888±0.0052 0.9785±0.0072 0.9865±0.0163 0.9905±0.0019

CIFAR-10 ER↓ 0.2880±0.0029 0.2393±0.0034 0.2387±0.0032 0.2361±0.0036 0.2359±0.0032 0.2525±0.0039 0.2284±0.0041 0.2234±0.0011
AUC↑ 0.8183±0.0089 0.8836±0.0094 0.8511±0.0139 0.8730±0.0099 0.8809±0.0118 0.8347±0.0168 0.8878±0.0083 0.8880±0.0019

AWA2- ER↓ 0.1784±0.0019 0.1753±0.0055 0.1493±0.0030 0.1550±0.0036 0.1789±0.0047 0.1794±0.0054 0.1397±0.0031 0.1316±0.0009
Attribute AUC↑ 0.7300±0.0421 0.7276±0.0595 0.7270±0.0595 0.7286±0.0725 0.7608±0.0622 0.7917±0.0749 0.7436±0.0584 0.7619±0.0194

School rMSE↓ 10.3127±0.0602 10.1606±0.0712 10.1604±0.0712 10.2398±0.0557 10.1218±0.1035 10.1320±0.0711 10.1806±0.0878 10.1769±0.0038
MAE↓ 8.1472±0.0379 8.1502±0.1764 8.0321±0.0463 8.0949±0.0305 7.9732±0.0739 8.0427±0.0668 8.0443±0.0480 8.0370±0.0168

(a) CIFAR-10 (b) AWA2-Attribute

Figure 3: Comparison of the prediction performance in ER between
the naive models (L = 0) and the original models (L 6= 0).

tasks. We conduct the same experiments to compare the performance
between the original models and their naive variants. The results on
CIFAR-10 and AWA2-Attribute are shown in Fig. 8. We can see that
on the two datasets, for both HTEMTL and pHTEMTL, the intro-
duction of hidden tasks effectively improves the MTL model’s gener-
alization performance. This validates our hypothesis that exploiting
the effect of hidden tasks can prevent the task grouping procedure
from amplifying the deviation of the learned task parameters from
the ground-truth values.

To further show the effectiveness of hidden tasks enhancement,
we vary the number of training samples for the experiments carried
on the AWA2-Attribute dataset. In each turn, we add 10 more pos-
itive samples and 10 more negative samples to the training set. By
cumulatively adding training samples, we can indirectly decrease the
amount of the deviation between the learned task parameters and the
ground-truth values. From Fig. 4, we can see that at different levels
of the deviation, the introduction of hidden tasks can consistently im-
prove the MTL model’s generalization performance and effectively
robustify the model.

6.5 Effectiveness of Cascading HTE Layers

To show the effectiveness of cascading HTE layers in pHTEMTL,
we evaluate its performance by varying the number m of HTE lay-
ers, m ∈ {1, 2, 3, 4, 5}. In (12), φ controls the layer-wise strength
of the HTE regularizer. When φ < 1, stronger regularization is im-
posed on deeper layers and φ > 1 otherwise. In this experiment, we
select the value of φ from {10−4, 10−3, ..., 1} and fix γ = 10−1,
λ = 10−2 and β = 10−2. Fig. 5 reports the results in terms of
ER on CIFAR-10 and AWA2-Attribute. From Fig. 5, we can see that
pHTEMTL consistently outperforms HTEMTL (m = 1), probably
because its multi-layer nature indeed helps to learn accurate and ro-
bust task subspace, which leads to improved generalization. In most

(a) HTEMTL (b) pHTEMTL

Figure 4: Comparison of the prediction performance in ER between
the naive models (L = 0) and the original models (L 6= 0) on the
AWA2-Attribute dataset by varying the number of training samples
from 20 to 100 by step 20.

(a) CIFAR-10 (b) AWA2-Attribute

Figure 5: Analysis on the effectiveness of cascading HTE layers in
pHTEMTL on the CIFAR-10 and AWA2-Attribute datasets.

cases, the best performance is achieved when m = 2 or 3, indicat-
ing using more layers does not necessarily improve the performance.
Regardless of m, the best performance is always achieved when φ
is around 10−3, Thus, it is recommended to set m ∈ {2, 3} and
10−4 < φ < 10−2 on the two datasets.

7 Conclusion

In this work, we propose a novel MTL method, named HTEMTL,
that incorporates the grouped MTL problem with subspace cluster-
ing, and exploits the effect of hidden tasks to improve generaliza-
tion. Moreover, pHTEMTL is proposed by extending HTEMTL to
a multi-layer model, so as to progressively extract deep latent in-
formation of parameters. Experimental results on both synthetic and
real-world datasets show that our method not only recovers the task
cluster structure clearly, but also achieves better prediction perfor-
mance than state-of-the-art grouped MTL methods.
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A More details on Optimization

A.1 Optimization of pHTEMTL

A.1.1 Updating {Lk}

With fixed W1 and {Zk}, we propose to update {Lk} for (??) from
the mth HTE layer to the 1st layer. We fix the rest of weights for the
ith layer, and obtain the problem w.r.t. Li:

min
Li

L(D,wm) +

m∑
k=i

(
λk
2
‖wk −Ckwk‖22

)
+ γi‖Li‖∗, (28)

where wk =
∏k−1
`=i C`wi, ∀k > i, and wi can be reconstructed by

wi =
∏i−1
`=1 C`w1. It is a convex but non-smooth problem, and thus

we propose to solve it by proximal method [27], which decomposes
its objective into two components, smooth f(Li) and non-smooth
g(Li):

f(Li) =L(D,wm) +

m∑
k=i

(
λk
2
‖wk −Ckwk‖22

)
,

g(Li) =γi‖Li‖∗. (29)

In the jth iteration, the optimal solution can be calculated by the
following proximal operator:

min
Li

1

2η
‖Li − (Lji − η∇Lif)‖2F + γi‖Li‖∗. (30)

where∇Lif is the gradient of f(Lji ) w.r.t. Li and η is a stepsize that
satisfies

f(Lj+1
i ) ≤ f(Lji )+〈∇Lif,L

j+1
i −Lji 〉+

1

2η
‖Lj+1

i −Lji‖
2
F . (31)

In each iteration, the update in (30) is done by the singular value
thresholding (SVT) algorithm [6]. Let ∇LiL and ∇LiQ denote the
derivatives of the loss function and the HTE regularizer w.r.t. Li,
respectively, we have ∇Lif = ∇LiL +∇LiQ. Based on the chain
rule of derivatives,∇LiL is recursively calculated by

∇LiL = ∇Wi+1LW>
i , (32)

where i = 1, 2, ...,m and ∇WL is calculated by (14). Let ∇LiQk
be the kth component of∇LiQ,∇LiQ is calculated in a similar way,

∇LiQ =

m∑
k=i

∇LiQk

= ∇LiQi +∇LiQi+1 +

m∑
k=i+2

∇LiQk,

= −λi∆WiW
>
i + λi+1Hi+1W

>
i

+

m∑
k=i+2

∇Wi+1QkW
>
i (33)

where i = 1, 2, ...,m, and H and ∇WQk are defined in (21) and
(20), respectively.

The optimization algorithm of pHTEMTL is provided in Alg. 1.

Algorithm 1: Pseudocode for pHTEMTL
Input : {Dt}Tt=1, λ, γ, β, φ and m
Initialize : Initialize W1 {Zk} and {Lk} by HTEMTL,

that is initialized by STL.
while the objective is not converged do

1. Update W1 : Gradient descent by (17).
2. Update Zk : Proximal method by (20) for

pHTEMTL, ∀k.
3. Update Lk : Proximal method by (30) for

pHTEMTL, ∀k.
end
Output : W1, {Zk} and {Lk}

A.2 Optimization of HTEMTL
Different from Alg. 1, we present an alternative algorithm for
HTEMTL. The objective functions in (9) are both bi-convex with
respect to W, Z and L, so the alternating optimization can be ap-
plied to solve the variables, which is guaranteed to converge to the
local minimum. Specifically, in each iteration, we optimize one vari-
able and keep the other two fixed, until the objective function satisfies
certain stopping criteria.

A.2.1 Initialization

Since (9) is non-convex, the initialization can affect the final result.
Therefore, we initialize W by the parameters learned by single task
learning with the l2-norm regularization, and simply set Z and L as
zero matrices.

A.2.2 Updating Z

With fixed W and L, we propose to use ADMM [5] to update Z for
(9). We introduce an auxiliary variable J, and solve the following
equivalent problem:

min
Z,J

λ

2
‖W−WZ−LW‖2F + γ‖J‖∗ s.t. Z− J = 0. (34)

The augmented Lagrangian with U as the scaled dual variable and ρ
as the penalty parameter is then defined by:

Lρ(Z,J,U)=
λ

2
‖W−WZ−LW‖2F+γ‖J‖∗+

ρ

2
‖J−(Z+U)‖2F .

(35)
The ADMM algorithm runs the following iterations until the stop-
ping criteria is satisfied:

J← arg min
J

1

2
‖J− (Z + U)‖2F +

γ

ρ
‖J‖∗, (36)

Z← arg min
Z

λ

2
‖W −WZ− LW‖2F +

ρ

2
‖J− (Z + U)‖2F ,

(37)

U← U + Z− J. (38)

In each iteration, the update in (36) is done by the singular value
thresholding algorithm [6]. To solve (37), we directly set Z to its
closed-form solution:

Z =

(
λ

ρ
W>W + IT

)−1 [
J−U +

λ

ρ
W> (W − LW)

]
.

(39)



A.2.3 Updating L

This is similar to the step on updating Z, we introduce an auxiliary
variable S with the same shape as L, and the augmented Lagrangian
with V as the scaled dual variable and ρ as the penalty parameter is
given as the following:

Lρ(L,S,V)=
λ

2
‖W−WZ−LW‖2F+γ‖S‖∗+

ρ

2
‖S−(L+V)‖2F .

(40)
The ADMM algorithm does the following iterations until the stop-
ping criteria is satisfied:

S← arg min
S

1

2
‖S− (L + V)‖2F +

γ

ρ
‖S‖∗, (41)

L← arg min
L

λ

2
‖W −WZ− LW‖2F +

ρ

2
‖S− (L + V)‖2F ,

(42)

V← V + L− S. (43)

Similarly, the problem in (41) is solved by singular value threshold-
ing, while the problem in (42) has the closed-form solution:

L =

[
λ

ρ
(W −WZ) W> + S−V

](
λ

ρ
WW> + Id

)−1

.

(44)

A.2.4 Updating W

The subproblem w.r.t. W is:

min
W

T∑
t=1

L(Dt,wt) +
λ

2
‖W −WZ− LW‖2F +

β

2
‖W‖2F . (45)

We propose to use gradient descent to solve this subproblem. Let
∇WL be the gradient of

∑T
t=1 L(Dt,wt) w.r.t. W and M = W−

WZ − LW, then the gradient of the whole objective J w.r.t. W is
given by:

∇WJ = ∇WL+ λ
[
(Id − L)>M−MZ>

]
+ βW, (46)

With certain stepsize η, the update of W in each step is:

W = W − η∇WJ . (47)

The optimization algorithm of HTEMTL is provided in Alg. 2.
In experiments, we initialize the ADMM penalty ρ to 1, and vary it
according to the scheme given by Eq. (3.13) in [5].

B More on Experiments
B.1 Statements

For the comparison methods, it was reported in [35] that GBDSP
can always outperform VSTG-MTL [16], so we directly compare our
model with GBDSP. The models proposed in [36] and [34] have no
public codes, and we actually reproduced [36] by ourselves, however,
it cannot provide competitive results. The model proposed in [30]
needs extra group information of features, thus we do not treat it as
one of our baselines.

Algorithm 2: Pseudocode for HTEMTL
Input : {Dt}Tt=1, λ, γ, β
Initialize : Initialize W with STL: W←WSTL,

Z← 0, L← 0
while the objective is not converged do

1. Update Z : Iteratively solve (36), (37) and (38) until
the convergence of the ADMM algorithm.

2. Update L : Iteratively solve (41), (42) and (43) until
the convergence of the ADMM algorithm.

3. Update W : Use gradient descent to solve problem
(45).

end
Output : W,Z,L

(a) λ and γ (b) λ and β (c) β and γ

Figure 6: Sensitivity analysis on λ, γ and β of HTEMTL in terms
of ER on the AWA2-Attribute dataset. Values of hyperparameters are
shown in the logarithmic scale.

B.2 Hyperparameter Sensitivity Analysis

The sensitivity of three regularization parameters, λ, γ and β, of
HTEMTL is investigated. Values of λ and γ are selected from
{10a

∣∣ |a| ∈ [4]} and the value of β is selected from {2 × 10a
∣∣

|a| ∈ [4]}. In HTEMTL, γ controls the low-rankness of the task
cluster structure matrix, λ controls the deviation between the learned
task parameter W and the model’s assumption, and β controls
the model’s complexity. Fig. 6 shows the experimental results of
HTEMTL in terms of ER on the AWA2-Attribute dataset. The sub-
figure in (a) is shown by fixing β = 10−2 and the last two sub-
figures are shown by fixing γ = 1 and λ = 10−2, respectively.
As shown in Fig. 6, HTEMTL achieves its best performance with
γ ≥ 10−1, β ≤ 10−1 and λ ≤ 10−2. Generally, it is recom-
mended to set λ one or two orders of magnitude smaller than γ and
set β ≤ 10−1. For pHTEMTL, the similar rule applies.

B.3 Convergence Analysis

The objective functions of HTEMTL and pHTEMTL are both non-
convex, and the proposed optimization algorithms in Sec. 5 converge
to the local minimum only if in each alternating step the global mini-
mum is reached. Theoretically analyzing the convergence is difficult.
As an alternative, we demonstrate the convergence property of pH-
TEMTL empirically by settingm = 3 in Fig. 7, and the convergence
property of HTEMTL is very similar, which is presented in the sup-
plement. When the relative change of its objective value is below to
10−3, we think it is converged. From Fig. 7, we can observe that the
objective function of pHTEMTL can converge to its local minimum
within 10 iterations in most cases.

B.4 More details on experimental setting

All the 10 repeats are using different subsets of the data except for
the School dataset. For the School dataset, instead of using a hold-



(a) CIFAR-10 (b) AWA2-Attribute

Figure 7: Convergence analysis of pHTEMTL by setting m = 3 on
the CIFAR-10 and AWA2-Attribute datasets.

out validation set, we do 10-fold cross-validation on the training set.
In each repeat, 25% of the dataset is randomly drawn as the testing
set and the rest as the training set.

For STL and the initialization, the `2 penalty applied to each task
is the same. Actually we find out that even if we allow each task to
choose its own penalty parameter via validation, all the tasks tend to
choose the same value of the hyper-parameter.

The environment for running all the experiments is: MATLAB
R2020b, Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz, 32 GB
RAM.

B.5 Comparing Methods

We compare our method with six benchmark methods:

• STL: Single-task learning method, in which each task is learned
independently with the l2-norm regularization. The `2 penalty ap-
plied to each task is the same8.

• GOMTL [20]: For task grouping and overlapping, the task pa-
rameter matrix is factorized into a product of a shared latent basis
and a sparse latent basis assignment matrix.

• AMTL [21]: It assumes that each task is represented by a sparse
non-negative linear combination of other tasks, and thus informa-
tion is transferred between tasks in an asymmetric manner.

• GAMTL [26]: It assumes that each task is a linear combination
of other tasks, and the trace Lasso [12] regularizer is imposed on
the task correlation matrix to maintain a task grouping structure.

• GBDSP [35]: It adopts the same assumption as GOMTL, but uses
a k-block diagonal regularizer to encourage the latent basis ma-
trix to have exactly k blocks, and thus inter-group information
transferring is punished. However, it needs the number k of task
clusters as prior knowledge.

• KMSV [8]: It learns multiple tasks jointly by sharing a low-rank
common subspace. Based on tight approximations of rank mini-
mization, a re-weighted iterative algorithm is proposed to mini-
mize k minimal singular values.

For the comparison methods, it was reported in [35] that GBDSP
can always outperform VSTG-MTL [16], so we directly compare our
model with GBDSP. KMSV is selected as it can outperform several
popular MTL methods with low-rankness assumptions [8]. The mod-
els proposed in [36] and [34] have no public codes, and we actually
reproduced [36] by ourselves, however, it cannot provide competitive
results. The model proposed in [30] needs extra group information of
features, thus we do not treat it as one of our baselines.

8 Actually we find out that even if we allow each task to choose its own
penalty parameter via validation, all the tasks tend to choose the same value
of the hyper-parameter.

(a) Synthetic (b) Fashion-MNIST

Figure 8: Comparison of the prediction performance in ER between
the naive models (L = 0) and the original models (L 6= 0) on the
Synthetic and Fashion-MNIST datasets.

B.6 Evaluation Metrics

For regression tasks, the two evaluation metrics we adopt are root
Mean Squared Error (rMSE) and Mean Absolute Error (MAE),
which take the following forms:

rMSE =

√∑T
t=1 ‖yt −X>t wt‖22∑T

t=1Nt
, (48)

MAE =

∑T
t=1 ‖yt −X>t wt‖1∑T

t=1Nt
. (49)

For classification tasks, we use Error Rate (ER) and Area Under
ROC-Curve (AUC) to measure the performance. They are defined as
the following:

ER =

∑T
t=1

∑Nt
i=1 I

[
sign(

(
X>t wt

)
i
) 6= yti

]∑T
t=1Nt

, (50)

AUC =
1

T

T∑
t=1

AUCt, (51)

where AUCt denotes the AUC score [13] for the t-th task.

B.7 Effectiveness of Hidden Tasks Enhancement

In this subsection, we study the effect of hidden tasks. Deactivating
the effect of hidden tasks is equivalent to set the matrix L in (9) and
(12) to be zero. In this way, HTEMTL degrades to the naive model
in (2), and pHTEMTL degrades to a naive one that ignores deep
hidden tasks. We conduct the same experiments to compare the per-
formance between the original models and their naive variants. The
results on the Synthetic and Fashion-MNIST datasets are shown in
Fig. 8. We can see that on the two datasets, for both HTEMTL and
pHTEMTL, the introduction of hidden tasks effectively improves
the MTL model’s generalization performance. This validates our hy-
pothesis that exploiting the effect of hidden tasks can prevent the task
grouping procedure from amplifying the deviation of the learned task
parameters from the ground-truth values.

B.8 Case Study on Time Efficiency

To study the time efficiency of all the comparing methods, we record
their training time on the AWA2-Attribute dataset. The result is re-
ported in Table 2. We can see GOMTL can outperform other methods
in term of training time efficiency, mainly because of its simplicity.
Our proposed method HTEMTL performs the best among all the
self-epressiveness based methods (AMTL and GAMTL).



Table 2: Training time on the AWA2-Attribute dataset (mean ± std).
The best result is highlighted in boldface.

GOMTL AMTL GAMTL GBDSP HTEMTL

Training time (s) 0.27±0.05 331.02±42.11 26.95±1.37 1.55±0.08 9.50±1.11

B.9 Comparison with neural network

Table 3: Experimental results (mean ± std) with different evaluation
metrics. The best two results are highlighted in boldface.

Dataset Measure Neural Network pHTEMTL HTEMTL

Synthetic ER↓ 0.2940±0.0149 0.2042±0.0044 0.2076±0.0128
AUC↑ 0.7874±0.0149 0.8868±0.0099 0.8906±0.0362

Fashion-MNIST ER↓ 0.1625±0.0173 0.0710±0.0051 0.0699±0.0130
AUC↑ 0.9140±0.0082 0.9905±0.0019 0.9865±0.0163

CIFAR-10 ER↓ 0.1777±0.0063 0.2234±0.0011 0.2284±0.0041
AUC↑ 0.8843±0.0068 0.8880±0.0083 0.8878±0.0064

AWA attribute ER↓ 0.2361±0.0098 0.1316±0.0009 0.1397±0.0031
AUC↑ 0.8337±0.0105 0.7619±0.0194 0.7436±0.0584

(a) Ground-truth (b) HTEMTL (c) Neural Network

Figure 9: Comparison on the task group structures learned from the
synthetic dataset.

We train a fully connected neural network with three hidden lay-
ers and conduct all the classification experiments on it. The hidden
layers are shared by all tasks as the common feature representation.
The number of neurons in each hidden layer is selected from {64,
128, 256, 512} via validation. The results are reported in Table 3.
We can see that in most cases, the three layer neural network can not
outperform HTEMTL and pHTEMTL. We think this is because
the assumption that all tasks share the same feature representation is
too strong for most real-world data. Another benefit of our proposed
method is its interpretability, as shown in Figure 9. The neural net-
work fails to find out the task group structure of the synthetic dataset,
while our proposed method can achieve that.

B.10 Statistical test

To perform statistical test on experimental results reported in Table 1
of the main paper, in this subsection we employ Nemenyi test [?], that
enables to statistically evaluate the performance difference between
each pair of comparing methods. In Nemenyi test, the performance
of two methods is treated as significantly different if their average
ranks differ by at least the critical difference (CD). Fig. 10 shows
the CD diagrams for two evaluation metrics (ER and AUC) at 0.05
significance level, based on the results on four classification datasets,
including one synthetic dataset and three real-world datasets. In each
subfigure, the CD is shown above the axis, where the averaged rank
is marked. In Fig. 10, comparing methods which are not significantly
different are connected by a thick line. As shown in Fig. 10, pH-
TEMTL and HTEMTL ranked 1st and 2nd, respectively. Besides,

pHTEMTL statistically outperformed STL and KMSV in terms of
ER. The other comparing methods achieved statistically compara-
ble performance with each other. The observation shows that hidden
tasks enhancement indeed helps to achieve better generalization abil-
ity with the learning model, leading to superior prediction accuracy
than the baselines. In addition, in order to demonstrate statistical dif-
ference between the proposed methods and other comparing meth-
ods, more datasets are needed in experiments.



(a) ER (b) AUC

Figure 10: CD diagrams (at 0.05 significance level) of eight comparing methods on four classification datasets in terms of ER and AUC. The
performance of two methods is considered as significantly different if the average ranks differ by at least the Critical Difference (CD). The
rank is shown next to the corresponding method.
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