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Problem Setting

• We consider the problem of Grouped Multi-Task Learning (Grouped-MTL).

• Hope: By correctly transferring information across the tasks, the generalization
performance of each task can be improved.

• Given T tasks, with training dataset Dt = {Xt,yt}, where Xt ∈ Rd×Nt and yt ∈ RNt .
Suppose the linear model yt = X>t wt is adopted. The task parameter matrix W is given
by:

W =

 | |
w1 · · · wT

| |

 ∈ Rd×T

• Goal: Carry out task parameter learning and task clustering in a unified framework, and
promote each other.
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Subspace Structure of Task Parameters

• Task parameters in the same cluster lie in a shared low-rank subspace.

• Clusters ⇔ Subspaces, similar to the problem setting of Subspace Clustering, where we
would like to cluster data points sample from a union of subspaces.

Cluster 1 Task parameter in cluster 1
Cluster 2
Cluster 3

Task parameter in cluster 2
Task parameter in cluster 3
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Subspace Clustering

• Self-expressiveness: A data point can be represented as a linear combination of the other
vectors in the same subspace, i.e. xi = Xci, where ci is the representation of xi.

• Constraint is required to make the representation useful.

• Seeking a low-rank representation can be useful:

min
C
‖C‖∗, s.t. X = XC, (1)

• When the data X is noise-free, then the optimal solution to it is given by C∗ = V0V
>
0 ,

here X = U0Σ0V
>
0 is the skinny SVD of X [Liu et al., 2012].
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Subspace Clustering

• Produces representations that directly reveals the cluster structure: C∗ must hold a
block-diagonal structure, each block indicates a subspace cluster.

• This is representation learning.
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Naive Task-Level Subspace Clustering

Replacing X with W, and simultaneously fitting the data and enforcing task-level subspace
structure, we reach the naive version of our objective function:

min
W,C
L(D,W) +

λ

2
‖W −WC‖2F + γ‖C‖∗ +

β

2
‖W‖2F , (2)

Problem: Task parameters learned from data are not reliable, learning error may be amplified
when used as a dictionary to represent themselves.
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Hidden Tasks Enhanced Multi-Task Learning

• Extend the original dictionary by concatenating W with the hidden task parameters H.

• Suppose both W and H are known and fixed, then the task-level subspace clustering
problem can be formulated as:

min
C
‖C‖∗, s.t. W = [W,H]C. (3)

Theorem

When both W and H are known, the optimal solution is C∗ = VV>W = [VW ;VH ]V>W ,
where [W,H] = UΣV> = UΣ[VW ;VH ]> is the SVD of the concatenated matrix.
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Hidden Tasks Enhanced Multi-Task Learning

Let’s re-plug C∗ = [VW ;VH ]V>W and H = UΣV>H into the original constraint:

W = [W,H][VWV>W ;VHV>W ]

= W

Z︷ ︸︸ ︷
VWV>W +

L︷ ︸︸ ︷
UΣV>HVHΣ−1U>W

= WZ + LW, (4)

where Z ∈ RT×T is the task correlation matrix, and L ∈ Rd×d is the feature correlation matrix.

The key

In reality, H is unreachable, so instead of exactly recovering Z and L from data, we take them
as learnable parameters to enforce subspace structure with the effect of hidden tasks.
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Hidden Tasks Enhanced Multi-Task Learning

To jointly carry out data fitting and hidden tasks enhanced subspace clustering, we reach our
objective:

min
W,Z,L

L(D,W) +
λ

2
‖W −WZ− LW‖2F + γ(‖Z‖∗ + ‖L‖∗) +

β

2
‖W‖2F . (5)
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Hidden Tasks Enhanced Self-Expressive Layer

Furthermore, we can extend our model from single layer to m layers, as the following:

min
W1,

{Zk},{Lk}

L(D,Wm)+

m∑
k=1

(λk
2
‖Wk −WkZk −LkWk‖2F + γk(‖Zk‖∗+ ‖Lk‖∗)

)
+
β

2
‖W1‖2F ,

(6)

the rationale is we can reformulate W = WZ + LW to:

w = (Z⊗ Id + IT ⊗ L)w = Mw, (7)

and we can extract deep hierarchical information, where w = vec(W) is the vectorization of
W:

wk = Mk−1wk−1 =

k−1∏
`=1

M`w1, M` = Z` ⊗ Id + IT ⊗ L`. (8)
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Empirical Results

• We first generate a dataset that
strictly follow our subspace
assumption.

• There are 4 task clusters contain 4,
5, 5 and 6 binary classification tasks,
respectively.

• Tasks within the same cluster share
the same set of bases.

• We generate the bases of each cluster
by applying QR decomposition to a
full-rank matrix.
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Empirical Results
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Empirical Results

We further study the effect of hidden tasks by deactivating the effect of hidden tasks. This is
equivalent to set the matrix L to 0.
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Empirical Results

We also study the effect of cascading HTE layers.
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Thanks

Please refer to our paper for more details.
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